Algebra

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Algebra
Booklet	Question Paper

Time Allowed: $\quad 106$ minutes
Score: /88
Percentage: $/ 100$

Grade Boundaries:

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 (i) Show that $x=2$ is a root of the equation $2 x^{3}-x^{2}-15 x+18=0$.
(ii) Hence solve the equation $2 x^{3}-x^{2}-15 x+18=0$.
(i) Express $\frac{8 x-1}{(2 x-1)(x+1)}$ in the form $\frac{A}{2 x-1}+\frac{B}{x+1}$ where A and B are constants.
(ii) Hence show that $\int_{2}^{5} \frac{8 x-1}{(2 x-1)(x+1)} \mathrm{d} x=\ln 24$.

3

The diagram shows a triangle $A B C$ in which angle $C=30^{\circ}, B C=x \mathrm{~cm}$ and $A C=(x+2) \mathrm{cm}$. Given that the area of triangle $A B C$ is $12 \mathrm{~cm}^{2}$, calculate the value of x.

4
Solve the inequality $|2 x-1|<3$.

5 Let $\mathrm{f}(x)=x^{2}+k x+4$, where k is a constant.
(i) Find an expression for the discriminant of f in terms of k.
(ii) Hence find the range of values of k for which the equation $\mathrm{f}(x)=0$ has two distinct real roots.

6 Let $\mathrm{f}(x)=x^{4}-4 x^{3}-10 x^{2}+28 x-15$.
(i) Show that $x=1$ is a root of the equation $\mathrm{f}(x)=0$.
(ii) Find the quotient and remainder when $\mathrm{f}(x)$ is divided by $x-5$.
(iii) Factorise $\mathrm{f}(x)$ fully and hence sketch the graph of $y=\mathrm{f}(x)$.

7 (i) Prove the identity $\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}} \equiv \frac{-2 h x-h^{2}}{x^{2}(x+h)^{2}}$.
(ii) Given that $\mathrm{f}(x)=x^{-2}$, use differentiation from first principles to find an expression for $\mathrm{f}^{\prime}(x)$.

8

$$
\begin{equation*}
\text { By first factorising completely } x^{3}+x^{2}-5 x+3 \text {, find } \int \frac{2 x^{2}+x+1}{x^{3}+x^{2}-5 x+3} \mathrm{~d} x \text {. } \tag{12}
\end{equation*}
$$

9 (i) Express $x^{2}+2 x-3$ in the form $(x+a)^{2}+b$, where a and b are integers to be found.
(ii) Sketch the graph of $y=x^{2}+2 x-3$ giving the coordinates of the vertex and of any intersections with the coordinate axes.

10 Let $\mathrm{f}(x)=x^{3}-3 x^{2}-13 x+15$.
(i) Show that $\mathrm{f}(1)=0$ and hence factorise $x^{3}-3 x^{2}-13 x+15$ completely.
(ii) Hence solve the equation $x^{3}-3 x^{2}-13 x+15=0$.

11 Solve the equation $3+2 x=|7-4 x|$.

12 (i) Show that $x=4$ is a root of $x^{3}-12 x-16=0$.
(ii) Hence completely factorise the expression $x^{3}-12 x-16$.

13 (i) Express $\frac{x-1}{x^{2}+2 x+1}$ in the form $\frac{A}{x+1}+\frac{B}{(x+1)^{2}}$, where A and B are integers.
(ii) Find the quotient and remainder when $2 y^{2}+1$ is divided by $y+1$.
(iii) A curve in the $x-y$ plane passes through the point $(0,2)$ and satisfies the differential equation

$$
\left(2 y^{2}+1\right)\left(x^{2}+2 x+1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=(x-1)(y+1)
$$

By solving the differential equation find the equation of the curve in implicit form.

