Crystal properties

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Crystal properties- Crystal structures
Booklet	Question Paper

Time Allowed: 28 minutes

Score: /23

Percentage: /100

Grade Boundaries:

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(a)	Wh	y are these elements referred to as <i>d-block</i> elements?
(b)	(i)	Give the full ground state electronic configuration of an atom of zinc.
	(ii)	Explain why zinc is not a transition element.
(c)		e graph in Fig. 1.1 shows the pattern of first ionisation energies for the element
		Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn elements
		Fig. 1.1
	(i)	With reference to the graph in Fig. 1.1, explain the pattern of first ionisation energie across Period 3, Na to Ar.

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

	(ii)	With reference to the graph in Fig. 1.1, explain why the first ionisation energies of the elements Sc to Cu are relatively constant with only a slight general increase.	
		[2]	
d)		crystal structures of the elements iron, copper and zinc are described, using the dard abbreviations, as BCC, CCP and HCP, respectively.	
	(i)	What does the abbreviation CCP stand for?	
		[1]	
	(ii)	In terms of layer structure representations, describe the HCP and CCP crystal structures.	
		HCP	
		CCP	
		[2]	
e)	A chloride of a transition metal, <i>M</i> , has a unit cell consisting of a CCP framework chloride anions, with the metal ions occupying half of the tetrahedral holes between anions.		
	(i)	What is meant by the term unit cell?	
		[2]	
	(ii)	State, and explain in terms of the ratio of anions to tetrahedral holes, what the formula of this compound is.	
		formula	
		explanation	
		[2]	

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(f) Cobalt(II) chloride exists in two forms, **A**, which is blue, and **B**, which is pink.

Addition of a small amount of either of these solids to water results in a pink solution in which the colour is due to the presence of a complex ion, **C**.

On addition of concentrated hydrochloric acid this solution turns blue as another complex ion, \mathbf{D} , forms with a different shape to the complex ion \mathbf{C} .

(i)	Give the formulae of A , B , C , and D .	
	A	
	В	
	C	
	D	[4]
(ii)	Give the shape of, and bond angles in, the ion C.	
	shape	
	bond angle	[2]
(iii)	Write an equation to illustrate the ligand exchange reaction involved in conversion of ${\bf C}$ to ${\bf D}$.	the
		[1]
(iv)	State and explain why the ion D has a different shape to the ion C .	
		· • • • • •
		[1]
	[Total:	23]