Carboxyl groups

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Carboxyl groups-Higher functional group level
Booklet	Question Paper

Time Allowed: 28 minutes

Score: /23

Percentage: /100

Grade Boundaries:

1. Pantothenic acid, vitamin B₅, is a water-soluble vitamin needed to form coenzyme-A (CoA), and it is critical in the metabolism and synthesis of carbohydrates, proteins and fats.

The skeletal formula of pantothenic acid is shown.

(a) Name fully all the functional groups present in a molecule of pantothenic acid.						
	[4]					

- (b) Give the structures of the organic products that would be formed if pantothenic acid was
 - (i) hydrolysed by reaction with aqueous acid,

(ii) reacted with sodium metal.

[2]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- **(c)** Pantothenic acid is a chiral molecule and the full name of the biologically active form includes the prefixes *R* and (+).
 - (i) Draw a circle around the chiral carbon in the molecule of pantothenic acid shown.

[1]

(ii)	Explain the meaning	of each of the	prefixes in the r	name R-(+)-pantothe	nic acid.

(+)		 		
()				
R				
, , , , , , , , , , , , , , , , , , , ,	 	 	 	
	 	 	 	[3]

- (d) The value of the acid dissociation constant, $K_{\rm a}$, for pantothenic acid is 3.98×10^{-5} , whilst that for propanoic acid is 1.32×10^{-5} .
 - (i) Calculate the pH of a 0.20 mol dm⁻³ solution of pantothenic acid.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

	(ii)	The inductive effect can be used to account for the difference in the acid dissociation constants of pantothenic acid and propanoic acid. Explain why.				
		[3]				
(e)	It is	lerivative of pantothenic acid, pantothenol, is a more stable form of the vitamin. often used in multivitamin supplements as it is converted to pantothenic acid in the body. structure is shown.				
		OH OH H OH				
	The structural formula of pantothenol is $\mathrm{HOCH_2C(CH_3)_2CHOHCONH(CH_2)_3OH}$ and molecular formula is $\mathrm{C_9H_{19}NO_4}$.					
	(i)	With reference to the idea of functional group level, explain what type of reaction is involved in the conversion of pantothenol into pantothenic acid.				
		[2]				

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(11)	ethanoyl chloride.	formula of the	ne organic	product	of the	reaction	of pantothenol	with
								[1]

(iii) Complete and balance the equation below for the reaction of pantothenol with ethanoyl

 $\mathsf{C_9H_{19}NO_4} + \dots \quad \mathsf{CH_3COC}l \rightarrow \dots \quad + \dots \quad [2]$

[Total: 23]

chloride, using molecular formulae for the products.