Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Photosynthesis & Photosynthesis Pigments

Question Paper 1

Level	A Level
Subject	Biology
Exam Board	Edexcel
Topic	Energy of Biological Processes
Sub Topic	Photosynthesis and Photosynthesis Pigments
Booklet	Question Paper 1

Time Allowed: 59 minutes

Score: /49

Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	'77.5%	70%	62.5%	57.5%	45%	<45%

1 (a) The diagram below shows some of the steps in the process of photosynthesis.

(i) Na	ame mo	lecules I	a nd	Q in	the	diagram.
--------	--------	-----------	-------------	------	-----	----------

molecule P

molecule Q

(ii) Place a cross \boxtimes in the box next to the names of molecules ${\bf R}$ and ${\bf S}$ in the diagram.

(1)

- A ADP and oxidised NADP
- B ADP and reduced NADP
- C ATP and oxidised NADP
- **D** ATP and reduced NADP

(ii	(iii) Describe the role of RUBISCO in the production of GALP in the light-independent reaction.				
		4)			
(b) Th	ne electronmicrograph below shows a chloroplast.				
	W				

(i) Place a cross \boxtimes in the box next to the name of the part labelled **Z**. (1) **A** cytoplasm X

C stroma

X

D thylakoid X

B matrix

(Total for Question 1 = 13 marks)

2 (a) The diagram below shows some of the steps in the process of photosynthesis.

(i)	Pla	ce a cross $oxtimes$ in the box next to the name of molecule $oldsymbol{P}$ in the diagram.	(1)
X	Α	carbon dioxide	
X	В	oxidised NADP	
X	C	reduced NADP	
X	D	RUBISCO	
(ii)	Na	me the molecules R and S in the diagram.	(1)
mo	leci	ule R	(1)

molecule **S**

(b) The electronmicrograph below shows an image of a chloroplast.

(i)	Place a cross \boxtimes in the box next to the name of the part labelled Z .	
		(1)

- **A** granum
- **B** ribosome
- **C** starch grain
- **D** stroma

(ii)	The equation below can be used to calculate the magnification of this chloropla	st.
	image length = actual length \times magnification	
	The actual length of this chloroplast is 0.007 mm.	
	Measure the image length between lines \mathbf{W} and \mathbf{Y} . Use this equation to calculate the magnification of the image.	(3)
	magnification =	
(iii	i) Describe the structure of chloroplasts in relation to their roles in photosynthesis	(3)
	(Total for Question 2 = 13 marl	cs)

- **3** Both plants and animals are able to respond to stimuli using photosensitive pigments.
 - (a) The photosensitive pigment in plants can be involved in a range of responses to environmental cues. This includes flower production in response to day length.

The diagram below shows the results of a study on the effect of day length on flowering in one species of plant.

(i) Place a cross ⊠ in the box to complete the conclusion made using these results.

The critical amount of daylight needed for the production of flowers is

- A between 15 and 18 hours
- **B** between 12 and 15 hours
- **C** between 9 and 12 hours
- **D** between 6 and 9 hours

(1)

			e photosensitive pigment involved in making this plant species produce wers is likely to be	(4)
	\times	Α	IAA	(1)
	×	В	chlorophyll	
	\times	C	FAD	
	\times	D	phytochrome	
	(iii) S	Sug	ggest how the plants were grown to ensure this study was valid.	(2)
		••••••		
			ggest how this study could be changed to produce a more accurate nclusion.	
	(COI	iciusion.	(1)
(b) For s		me plant species, day length is not an environmental cue for the production rers.	
			st one environmental cue, other than day length, that could stimulate	
	pian	115	of these species to produce flowers.	(1)

(c) Rhodospin is found in rod cells in the retina of mammalian eyes.	
(i) State the location of rhodopsin within a rod cell.	(1)
 (ii) In the table below, place a tick (✓) in the box if the statement applies to the description and place a cross (x) in the box if the statement does not apply. 	(3)

	Statement				
Description	Opsin binds to the rod cell membrane	Rhodopsin bleaches	ATP used		
Rhodopsin responding to light					
Rhodopsin being reformed					

(Total for Question 3 = 10 marks)

4 The photograph below shows part of a leaf, as seen using a hand lens.

Magnification $\times 20$

(a) Suggest why each of the following is important for the production of carbohydrates in the photosynthetic cells.

(i) The thin lamina	(2)
(ii) Vessels in the midrib	(2)
 (ii) Vessels in the midrib	

- (b) The photosynthetic cells contain many chloroplasts.
 - (i) Complete the table below by naming the part of the chloroplast where each of the reactions, **R**, **S** and **T**, takes place.

Reaction	Details	Part of the chloroplast
R	ADP + inorganic phosphate $ ightarrow$ ATP	
S	RuBP + $CO_2 \rightarrow 2 \times GP$	
Т	$2 \times GP \rightarrow 2 \times GALP$	

(3)

(ii)	Pla	ce a cross \boxtimes in the box next to the name of reaction R .	(1)
X	A	carbon fixation	
×	В	hydrolysis	
×	C	phosphorylation	
X	D	photolysis	
(iii)	Pla	ce a cross 🛮 in the box next to the name of the enzyme involved in reaction	S . (1)
X	A	endonuclease	
X	В	phosphorylase	
X	C	RUBISCO	
X	D	transcriptase	
(iv)		ggest how GALP, formed by reaction T , can be used to synthesise the lulose in plant cell walls.	(4)
		(Total for Question 4 = 13 mar	·ks)