Functions

Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Functions
Booklet	Question Paper

Time Allowed:	40 minutes
Score:	$/ 33$
Percentage:	$/ 100$

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 Let $\mathrm{f}(x)=x^{2}$ and $\mathrm{g}(x)=7 x-2$ for all real values of x.
(i) Give a reason why f has no inverse function.
(ii) Write down an expression for $\operatorname{gf}(x)$.
(iii) Find $\mathrm{g}^{-1}(x)$.
(iv) Explain the relationship between the graph of $y=\mathrm{g}(x)$ and $y=\mathrm{g}^{-1}(x)$.

2 Let $\mathrm{f}(x)=x^{2}$ and $\mathrm{g}(x)=7 x-2$ for all real values of x.
(i) Give a reason why f has no inverse function.
(ii) Write down an expression for $\mathrm{gf}(x)$.
(iii) Find $\mathrm{g}^{-1}(x)$.

3 The function f is defined by f: $t \mapsto 2 \sin t+\cos 2 t$ for $0 \leqslant t<2 \pi$.
(i) Show that $\frac{\mathrm{df}}{\mathrm{d} t}=2 \cos t(1-2 \sin t)$.
(ii) Determine the range of f .

A curve C is given parametrically by $x=2 \cos t+\sin 2 t, y=\mathrm{f}(t)$ for $0 \leqslant t<2 \pi$.
(iii) Show that $x^{2}+y^{2}=5+4 \sin 3 t$.
(iv) Deduce that C lies between two circles centred at the origin, and touches both.
(v) Find the gradient of the tangent to C at the point at which $t=0$.

4 Let $\mathrm{f}(x)=x^{2}(x-2)$ and $\mathrm{g}(x)=2 x-1$ for all real x.
(i) Sketch the graph of $y=\mathrm{f}(x)$ and explain briefly why the function f has no inverse.
(ii) Write down $\mathrm{g}^{-1}(x)$.
(iii) On the same diagram, sketch the graphs of $y=\mathrm{f}(x-1)-3$ and $y=\mathrm{g}^{-1}(x)$ and state the number of real roots of the equation $\mathrm{f}(x-1)-3=\mathrm{g}^{-1}(x)$.

