13C-NMC

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	13C-NMC
Booklet	Question Paper

Time Allowed: 28 minutes

Score: /23

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1. A survey in 2008 of the 24 million known organic compounds identified the most common structural motifs. The 3rd most popular shape (after the hexagon and pentagon) was based on the 1,2-diphenylethane molecule.

- (a) How many signals would there be in the carbon-13 NMR spectrum of the 1,2-diphenylethane molecule?
 -[1]
- **(b)** If one of the hydrogen atoms on one of the phenyl groups of 1,2-diphenylethane is substituted with a chlorine atom, how many possible isomers would there be?

A closely related compound to 1,2-diphenylethane is 1,2-diphenylethene, commonly known as stilbene.

Stilbene can be synthesised from (bromomethyl)benzene according to the scheme below. The reactions are labelled **1** to **6** above the reaction arrows. The benzene ring does not take part in any of these reactions.

$$A + [O] \xrightarrow{\text{reaction 1}} A + \text{NaBr}$$

$$A + [O] \xrightarrow{\text{reaction 2}} B + \text{H}_2O$$

$$Br + Mg \xrightarrow{\text{reaction 3}} C$$

$$B + C \xrightarrow{\text{reaction 4}} D$$

$$D + \text{H}_2O \xrightarrow{\text{reaction 5}} E + \text{MgBrOH}$$

$$E \xrightarrow{\text{reaction 6}} + \text{H}_2O$$

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	Reaction 2 is a partial oxidation. In the equation [O] represents the oxygen atom provided from some suitable reagents. Suggest such a reagent.
	[1]
(d)	What is the name of the type of compound produced in reaction 3 ?
(e)	Classify the type of reaction in 1 , 5 and 6 .
(-)	reaction 1[1]
	reaction 5[1
	reaction 6[1
(f)	Draw the structures of unknowns A to E .
	A
	[1]
	В
	[1]
	c
	[1] D
	[1]
	E
	[1]
	[Total: 12]

[Total: 12]

- 2. (a) Chemists from the University of Cambridge have used Au₅₅ nanoparticles to catalyse a reaction of oxygen with phenylethene (styrene), C₆H₅-CH=CH₂, (*Nature*, 2008). Three products, A, B and C, were observed. Use the following observations to complete the structure of A, B and C.
 - The phenyl (C_6H_5 –) group remains unchanged in **A**, **B** and **C**.
 - A has the molecular formula C₇H₆O;

B and **C** both have the molecular formula C₈H₈O.

- When warmed with Tollens' reagent (ammoniacal silver nitrate) compound A produces a silver mirror but compounds B and C do not.
- The infra-red spectra of compounds A and B each have an intense peak at around 1700 cm⁻¹ but that of compound C does not.
- None of the compounds' infra-red spectra show any broad signals above 3000 cm⁻¹.
- Compound C is the most reactive and unstable of the three. It contains a ring
 of three atoms.

structure of A

structure of B

$$C_6 H_5 -$$

 C_6H_5-

Structure of C

$$C_{6}H_{5}-$$

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b)	(i)		ot-cross diagram for the hydroxonium ion, H ₃ O ⁺ , showing only cell electrons.	
				[2]
	(ii)	alkyl gro	onium ions are analogues of $\rm H_3O^+$ where the oxygen atom is bonderoups rather than to hydrogen atoms. The tripropyl oxonium ion is a typonium ion.	
		•	Write down the molecular formula of the tripropyl oxonium ion.	
		•	Deduce the m/z of the molecular ion peak in its mass spectrum.	
		•	Deduce the number of signals in its ¹³ C NMR spectrum.	
				[3]
				_

- (iii) Oxatriquinane is an alkyl oxonium ion whose synthesis was reported recently (*Journal of the American Chemical Society*, 2008). It was found to be surprisingly stable in water, and has:
 - a molecular formula of $C_9H_{15}O^+$
 - only two signals in its ¹³C NMR spectrum
 - no carbon-carbon multiple bonds
 - multiple rings in its structure.

Suggest a structure for oxatriquinane.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

Chemists have recently synthesised the smallest "beakers" for carrying out chemical reactions (<i>Nature Chemistry</i> , 2009). The "beakers" are the junctions from a network of hollow polymer nanofibres. The volume of the beakers is about $4 \times 10^{-18} \text{dm}^3$.	•
(i) A "beaker" is full of a solution of glucose of concentration $5 \times 10^{-4} \text{mol dm}^{-3}$. Calculate the amount (in moles) of glucose in the "beaker".	
mol [1]	
(ii) Use your answer to part (i) to calculate the number of glucose molecules in the "beaker".	(
[1]	
[Total: 11]	