Trigonometry Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Trigonometry
Booklet	Question Paper

Time Allowed:	$\mathbf{1 2 2}$ minutes
Score:	$/ 102$
Percentage:	$/ 100$

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

10 (i Prove that $\cot \theta+\frac{\sin \theta}{1+\cos \theta}=\operatorname{cosec} \theta$.
(ii) Hence solve the equation $\cot \left(\theta+\frac{\pi}{4}\right)+\frac{\sin \left(\theta+\frac{\pi}{4}\right)}{1+\cos \left(\theta+\frac{\pi}{4}\right)}=\frac{5}{2}$ for $0 \leqslant \theta \leqslant 2 \pi$.

2 Sketch the curve with equation $y=\tan x$ for $-\frac{1}{2} \pi<x<\frac{1}{2} \pi$.

On the same diagram, sketch the curve with equation $y=\tan ^{-1} x$ for all x.
State the geometrical relationship between the curves.

3 (i) Use the identity $\tan 2 x \equiv \frac{2 \tan x}{1-\tan ^{2} x}$ to show that $\tan 4 x \equiv \frac{4\left(1-\tan ^{2} x\right) \tan x}{1-6 \tan ^{2} x+\tan ^{4} x}$.
(ii) Hence, given that $x=\frac{1}{16} \pi$ is a root of the equation $\tan ^{4} x+p \tan ^{3} x-6 \tan ^{2} x-p \tan x+1=0$ where p is a positive constant, f nd the value of p.

4 The diagram shows the triangle $A B C . A B=10 \mathrm{~cm}, A C=7 \mathrm{~cm}$ and angle $B A C=100^{\circ}$.

(i) Find the length $B C$.
(ii) Find the area of the triangle $A B C$.

5 Given that the angle θ is acute and $\cos \theta=\frac{3}{4} \mathrm{f}$ nd, without using a calculator, the exact value of $\sin 2 \theta$ and of $\cot \theta$.

6 (i) Sketch the graph of $y=\cos 2 x$ for $0 \leqslant x \leqslant 2 \pi$.
(ii) Describe the transformation which maps the graph of $y=\cos x$ onto the graph of $y=\cos 2 x$. [3]

7 (i) Show that $\sin \theta+\sqrt{3} \cos \theta$ can be expressed in the form $R \sin (\theta+\alpha)$ where $R>0$ and $0<\alpha<\frac{1}{2} \pi$. State the values of R and α.
(ii) Hence find the value of θ, where $0<\theta<\pi$, such that $\sin \theta+\sqrt{3} \cos \theta=0.8$.

8 (i) Prove that $\operatorname{cosec} 2 x-\cot 2 x \equiv \tan x$ and hence find an exact value for $\tan \left(\frac{3}{8} \pi\right)$.
(ii) Find the exact value of $\int_{\frac{1}{4} \pi}^{\frac{3}{8} \pi}(\operatorname{cosec} 2 x-\cot 2 x)^{2} \mathrm{~d} x$.

9 (i) Prove that

$$
\sin ^{2} 2 \theta\left(\cot ^{2} \theta-\tan ^{2} \theta\right)=4\left(\cos ^{4} \theta-\sin ^{4} \theta\right)
$$

and hence show that

$$
\begin{equation*}
\sin ^{2} 2 \theta\left(\cot ^{2} \theta-\tan ^{2} \theta\right)=4 \cos 2 \theta \tag{5}
\end{equation*}
$$

(ii) Hence solve the equation $\sin ^{2} 2 \theta\left(\cot ^{2} \theta-\tan ^{2} \theta\right)=2$ for $0^{\circ} \leqslant \theta<360^{\circ}$.

10 Sketch, on separate diagrams, the graphs of the following functions for $0 \leqslant x \leqslant 2 \pi$ giving the coordinates of all points of intersection with the axes.
(i) $y=\sin x$.
(ii) $y=\sin \left(x+\frac{1}{6} \pi\right)$.

11 (i) Prove that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ and deduce that

$$
\begin{equation*}
\sin \theta+\sin 3 \theta=4 \sin \theta \cos ^{2} \theta \tag{5}
\end{equation*}
$$

(ii) Hence f nd the values of θ such that $0^{\circ}<\theta<180^{\circ}$ that satisfy the equation

$$
\begin{equation*}
\cot ^{2} \theta=\sin \theta+\sin 3 \theta \tag{4}
\end{equation*}
$$

12 (i) On the same diagram, sketch the graphs of $y=2 \sec x$ and $y=1+3 \cos x$, for $0 \leqslant x \leqslant \pi$.
(ii) Solve the equation $2 \sec x=1+3 \cos x$, where $0 \leqslant x \leqslant \pi$.

13 (i) Write down an identity for $\tan 2 \theta$ in terms of $\tan \theta$ and use this result to show that

$$
\begin{equation*}
\tan 3 \theta=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta} . \tag{4}
\end{equation*}
$$

(ii) Given that $0<\theta<\frac{1}{2} \pi$ and $\theta=\sin ^{-1}\left(\frac{1}{\sqrt{10}}\right)$, show that $\tan 3 \theta=\frac{13}{9}$.
(iii) Show that the solutions of the equation

$$
\tan \left(3 \sin ^{-1} x\right)=\frac{13}{9}
$$

for $0<x<2 \pi$ are

$$
x=\frac{\sqrt{10}}{10} \quad \text { and } \quad x=\frac{\sqrt{10}(1+3 \sqrt{3})}{20} .
$$

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

14 (i) Show that

$$
\begin{equation*}
\cos ^{4} x-\sin ^{4} x \equiv 2 \cos ^{2} x-1 \tag{2}
\end{equation*}
$$

(ii) Hence f nd the solutions of

$$
\cos ^{4} x-\sin ^{4} x=\cos x
$$

where $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

