Energy changes

Question Paper 3

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Energy changes- Physical Chemistry
Booklet	Question Paper 3

Time Allowed: 46 minutes

Score: /38

Percentage: /100

Grade Boundaries:

1	Mag	gnesium powder	is used to generate heat for	battlefield soldiers wanting	a hot drink.
	9.0	g of magnesium	powder is added to 30.0 g, a	n excess, of water.	
			Mg + 2H ₂ O →	\rightarrow Mg(OH) ₂ + H ₂	
	(a)	Calculate the a	mount, in mol, of magnesiun	٦.	
	41.				mol [1]
	(D)	Calculate the m	nass of water that is in exces	S.	
					g [2]
	(c)	Calculate the v	olume of hydrogen gas, in dr	m ³ , produced at room tempe	erature and pressure.
					dm³ [1]
	(d)		ard enthalpy change of form e of reaction for magnesium		alculate the standard
			substance	$\Delta_{\rm f} H^{\oplus}$ / kJ mol ⁻¹	
			H ₂ O	-285.8	
			Mg(OH) ₂	-924.5	
					kJ mol ⁻¹ [2]

(e)		culate the heat energy, in kJ, released when 9.0 g of magnesium powder is added to 30.0 g vater.
		kJ [1]
(f)		en the magnesium powder and water are mixed, the temperature of the drink being heated rise to 60°C in about 10 minutes.
		culate how much energy, in kJ, is required to heat 150 g of the drink from 15 °C to 60 °C. sume that the specific heat capacity of the drink is 4.2 J g ⁻¹ K ⁻¹ .
		kJ [1]
(g)		w would using 9.0 g of magnesium granules affect the amount of energy released, and the sperature reached by the drink? Explain your answer.
		[2]
(h)	Exc	othermic reactions that do not produce hydrogen gas are being explored.
	(i)	One example is mixing calcium oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution.
	(ii)	Another example is the reaction of phosphorus(V) oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution.
		pH[2]
	(iii)	Calcium oxide reacts with phosphorus (V) oxide to make calcium phosphate (V). Write an equation for this reaction.
		[1]
		[Tatal: 45]

[Total: 15]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemvexams.co.uk/

2. (a) Simple esters are flammable liquids. Flammability is affected by volatility. Write the following homologous series in order of boiling point, assuming molecular masses are similar.

(b) The structure of methyl ethanoate, $C_3H_6O_2$, is shown below.

Write an equation for the complete combustion of methyl ethanoate.

.....[1]

(c) A student used the apparatus shown in the diagram to carry out experiments to determine the standard enthalpy change of combustion for ethyl ethanoate.

- mass of copper pot = 250g
- volume of water = 300 cm³

An initial experiment was carried out using methyl ethanoate. This ester was combusted in a spirit burner underneath a copper can so that the flame from the burner heated 300 cm³ of water in the can. It was found that 0.980 g of ester was required to raise the temperature of the water in the can by 10.0 °C.

(i)	Describe how this initial experiment was set up and carried out to collect the data that gave these results.
	[6]
(ii)	Calculate the total thermal energy in kJ gained by the water and the copper can in this initial experiment. The specific heat capacities of water and copper are 4.18 and $0.384\mathrm{Jg^{-1}K^{-1}}$, respectively.
	Take the density of water to be 1.00 g cm ⁻³ . Assume that the water and copper are in thermal equilibrium with each other. Express your answer to the appropriate number of significant figures.
	[3]

(iii)	The theoretical standard enthalpy change of combustion of methyl ethanoate is –1592.1 kJ mol ⁻¹ . Calculate the total theoretical thermal energy in kJ released by the mass of methyl ethanoate combusted in this initial experiment.
	kJ [2]
(iv)	Heat losses are significant but can be taken into account by using the known value of $\Delta_{\rm c}H^{\oplus}$ of $-1592.1{\rm kJmol^{-1}}$ for methyl ethanoate. A similar experiment with ethyl ethanoate produced the following results.
	mass of ethyl ethanoate combusted = 0.948 g
	increase in temperature of 300 cm ³ water = 11.5 °C
	Calculate the most accurate possible value for the standard enthalpy change of combustion for ethyl ethanoate.
	kJmol ⁻¹ [4]

(d)	Outline four improvements that could increase the accuracy of the raw data recorded in these experiments.
	[4]
(e)	In terms of the ease of lighting and the appearance of the flame how does methyl ethanoate compare to decyl ethanoate ($CH_3COOC_{10}H_{21}$)?
	ease of lighting
	appearance of flame
	[2]

[Total: 23]