Differentiation Question Paper

Level	Pre U
Subject	Maths
Exam Board	Cambridge International Examinations
Topic	Differentiation
Booklet	Question Paper

Time Allowed:	175 minutes
Score:	$/ 146$
Percentage:	$/ 100$

Grade Boundaries:

1 The equation of a curve is $y=x^{3}-2 x^{2}-4 x+3$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Hence find the coordinates of the stationary points on the curve.

2 The parametric equations of a curve are

$$
x=\mathrm{e}^{2 t}-5 t, \quad y=\mathrm{e}^{2 t}-3 t .
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Find the equation of the tangent to the curve at the point when $t=0$, giving your answer in the form $a y+b x+c=0$ where a, b and c are integers.

3 A curve has equation

$$
y=\mathrm{e}^{a x} \cos b x
$$

where a and b are constants.
(i) Show that, at any stationary points on the curve, $\tan b x=\frac{a}{b}$.
(ii)

Values of related quantities x and y were measured in an experiment and plotted on a graph of y against x, as shown in the diagram. Two of the points, labelled A and B, have coordinates $(0,1)$ and $(0.2,-0.8)$ respectively. A third point labelled C has coordinates $(0.3,0.04)$. Attempts were then made to find the equation of a curve which fitted closely to these three points, and two models were proposed.

In the first model the equation is $y=\mathrm{e}^{-x} \cos 15 x$.
In the second model the equation is $y=f \cos (\lambda x)+\mathrm{g}$, where the constants f, λ, and g are chosen to give a maximum precisely at the point $A(0,1)$ and a minimum precisely at the point $B(0.2,-0.8)$.

By calculating suitable values evaluate the suitability of the two models.

4 The parametric equations of a curve are given by

$$
x=\mathrm{e}^{t}-2 t, \quad y=\mathrm{e}^{t}-5 t .
$$

(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Show that $t=-\ln 2$ at the point on the curve where the gradient is 3 .

5 Given that $\mathrm{f}(x)=x^{3}$, use differentiation from f rst principles to prove that $\mathrm{f}^{\prime}(x)=3 x^{2}$.

6 Show that the graph of $y=x^{2}-\ln x$ has only one stationary point and give the coordinates of that point in exact form.

7 The cubic equation $x^{3}-2 x^{2}+4 x-7=0$ has a single root α, close to 1.9 , which can be found using an iteration of the form $x_{n+1}=\mathrm{F}\left(x_{n}\right)$. Three possible functions that can be used for such an iteration are

$$
\begin{equation*}
\mathrm{F}_{1}(x)=\frac{7}{4}+\frac{1}{2} x^{2}-\frac{1}{4} x^{3}, \quad \mathrm{~F}_{2}(x)=\sqrt[3]{2 x^{2}-4 x+7}, \quad \mathrm{~F}_{3}(x)=\frac{7-4 x}{x^{2}-2 x} \tag{5}
\end{equation*}
$$

(i) Differentiate each of these functions with respect to x.
(ii) Without performing any iterations, and using $x=1.9$, show that an iterative process based on only two of the given functions will converge.

Determine which one will do so more rapidly.
The sequence of errors, e_{n}, is such that $e_{n+1} \approx \mathrm{~F}^{\prime}(\alpha) e_{n}$.
(iii) Using the iteration from part (ii) with the most rapid convergence, estimate the number of iterations required to reduce the magnitude of the error from $\left|e_{1}\right|$ in the frst term to less than $10^{-10}\left|e_{1}\right|$.

8 A curve C is define parametrically by

$$
x=\cos t(1-2 \sin t), \quad y=\sin t(1-3 \sin t), \quad 0 \leqslant t<2 \pi .
$$

(i) Show that C intersects the y-axis at exactly three points, and state the values of t and y at these points.
(ii) Find the range of values of t for which C lies above the x-axis.

9 A curve has parametric equations given by

$$
x=2 \sin \theta, \quad y=\cos 2 \theta
$$

(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \sin \theta$.
(ii) Hence find the equation of the tangent to the curve at $\theta=\frac{1}{2} \pi$.
(iii) Find the cartesian equation of the curve.

10 The curve C has equation $x^{2}+x y+y^{2}=19$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x-y}{x+2 y}$.
(ii) Hence find the equation of the normal to C at the point $(2,3)$ in the form $a x+b y+c=0$, where a, b and c are integers.

11 It is given that $y=x^{2} \mathrm{e}^{-x}$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=x \mathrm{e}^{-x}(2-x)$.
(ii) Hence find the exact coordinates of the stationary points on the curve $y=x^{2} \mathrm{e}^{-x}$.

12 The equation of a curve is $y=x^{3}+x^{2}-x+3$.

$$
\begin{equation*}
\text { (i) Find } \frac{\mathrm{d} y}{\mathrm{~d} x} \text {. } \tag{2}
\end{equation*}
$$

(ii) Hence find the coordinates of the stationary points on the curve.

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

13 Let $y=(2 x-3) \mathrm{e}^{-2 x}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, giving your answer in the form $\mathrm{e}^{-2 x}(a x+b)$, where a and b are integers.
(ii) Determine the set of values of x for which y is increasing.

14 (i) A curve C_{1} is defined by the parametric equations

$$
x=\theta-\sin \theta, \quad y=1-\cos \theta,
$$

where the parameter θ is measured in radians.
(a) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\cot \frac{1}{2} \theta$, except for certain values of θ, which should be identified.
(b) Show that the points of intersection of the curve C_{1} and the line $y=x$ are determined by an equation of the form $\theta=1+A \sin (\theta-\alpha)$, where A and α are constants to be found, such that $A>0$ and $0<\alpha<\frac{1}{2} \pi$.
(c) Show that the equation found in part (b) has a root between $\frac{1}{2} \pi$ and π.
(ii) A curve C_{2} is defined by the parametric equations

$$
x=\theta-\frac{1}{2} \sin \theta, \quad y=1-\frac{1}{2} \cos \theta,
$$

where the parameter θ is measured in radians. Find the y-coordinates of all points on C_{2} for which $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$.

15 The parametric equations of a curve are $x=\frac{1}{1+t^{2}}$ and $y=\frac{t}{1+t^{2}}, t \in \mathbb{R}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Hence find the coordinates of the stationary points of the curve.

16 A curve has equation $x^{2}-x y+y^{2}=1$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(ii) Find the coordinates of the points on the curve in the second and fourth quadrants where the tangent is parallel to $y=x$.

17 Let $y=(x-1)\left(\frac{2}{x^{2}}+t\right)$ define y as a function of $x(x>0)$, for each value of the real parameter t.
(i) When $t=0$,
(a) determine the set of values of x for which y is positive and an increasing function,
(b) locate the stationary point of y, and determine its nature.
(ii) It is given that $t=2$ and $y=-2$.
(a) Show that x satisfies $\mathrm{f}(x)=0$, where $\mathrm{f}(x)=x^{3}+x-1$.
(b) Prove that f has no stationary points.
(c) Use the Newton-Raphson method, with $x_{0}=1$, to find x correct to 4 significant figures. [4]

