Structure and Bonding

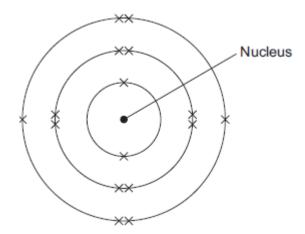
Question Paper

Level	GCSE
Subject	Chemistry
Exam Board	AQA
Unit	C2
Topic	Structure and Bonding
Difficulty Level	Silver Level
Booklet	Question Paper

Time Allowed: 273 minutes

Score: /273

Percentage: /100


For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Q1. T	his qu	ıestio	n is about atomic structure and elements.	
	(a)	Complete the sentences.		
		(i)	The atomic number of an atom is the number of	(1)
		(ii)	The mass number of an atom is the number of	
				(1)
	(b)	Exp	lain why an atom has no overall charge.	
		Use	the relative electrical charges of sub-atomic particles in your explanation.	
				(2)
	(c)	Ехр	lain why fluorine and chlorine are in the same group of the periodic table.	
		Give	e the electronic structures of fluorine and chlorine in your explanation.	
				(2)
				(-)

The diagram shows the electronic structure of an atom of a non-metal.

(d)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

What is the chemical symbol of this non-metal?

Tick (✓) one box.

Ar	
0	
S	
Si	

(1)

(e) When elements react, their atoms join with other atoms to form compounds.

Complete the sentences.

(i) Compounds formed when non-metals react with metals consist of particles called

(1)

(ii) Compounds formed from only non-metals consist of particles called

(1) (Total 9 marks)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

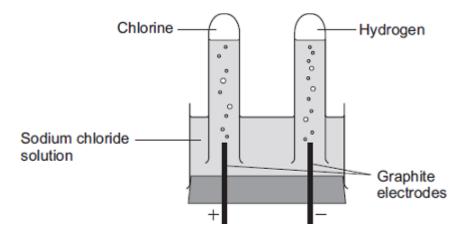
Chlorine

CI — CI

Q2.In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

Explain why chlorine (Cl₂) is a gas at room temperature, but sodium chloride (NaCl) is a solid at room temperature.

Sodium chloride


Chloride ion (CI⁻)

Sodium ion (Na ⁺)	
Include a description of the bonding and structure of chlorine and sodium chloride answer.	e in your
Extra space	
	(Total 6 marks)

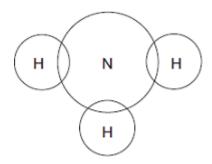
For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Q3.The electrolysis of sodium chloride solution is an industrial process.

The diagram shows the apparatus used in a school experiment.

(a)	One of the products of the electrolysis of sodium chloride solution is hydrogen.		
	(i)	Why do hydrogen ions move to the negative electrode?	
			(1)
	(ii)	How does a hydrogen ion change into a hydrogen atom?	

(1)


(b) Hydrogen is used to make ammonia (NH₃).

Complete the diagram to show the bonding in ammonia.

Use dots (●) and crosses (x) to show electrons.

Show only outer shell electrons.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

(2)

(c) The table shows the ions in sodium chloride solution.

Positive ions	Negative ions
hydrogen	chloride
sodium	hydroxide

In industry, some of the waste from the electrolysis of sodium chloride solution is alkaline and has to be neutralised.

(i)	Which ion makes the waste alkaline?		
		(1)	
(ii)	This waste must be neutralised. Write the ionic equation for the neutralisation reaction.		
		(1)	

(d) In this question you will be assessed on using good English, organising information clearly and using specialist terms where appropriate.

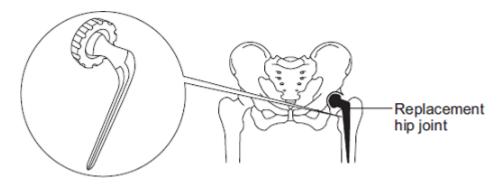
The electrolysis of sodium chloride solution also produces chlorine and sodium hydroxide.

In industry, the electrolysis of sodium chloride solution can be done in several types of electrolysis cell.

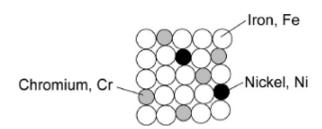
Some information about two different types of electrolysis cell is given below.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

	Mercury cell	Membrane cell
Cost of construction	Expensive	Relatively cheap
Additional substances used	Mercury, which is recycled. Mercury is toxic so any traces of mercury must be removed from the waste	Membrane, which is made of a polymer. The membrane must be replaced every 3 years.
Amount of electricity used for each tonne of chlorine produced in kWh	3400	2950
Quality of chlorine produced	Pure	Needs to be liquefied and distilled to make it pure.
Quality of sodium hydroxide solution produced	50% concentration. Steam is used to concentrate the sodium hydroxide solution produced.	30% concentration. Steam is used to concentrate the sodium hydroxide solution produced.


Use the information and your knowledge and understanding to compare the environmental and economic advantages and disadvantages of these two types of electrolysis cell.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk


(6)
(6)
(Total 12 marks)

Q4.The hip joint sometimes has to be replaced.

Early replacement hip joints were made from stainless steel.

Stainless steel is an alloy of iron, chromium and nickel. The diagram below represents the particles in stainless steel.

Paticle diagram of stainless steal

(a) Use the diagram to complete the percentages of metals in this stainless steel.

The first one has been done for you.

Element	Percentage (%)
Iron, Fe	72
Chromium, Cr	
Nickel, Ni	

(b)

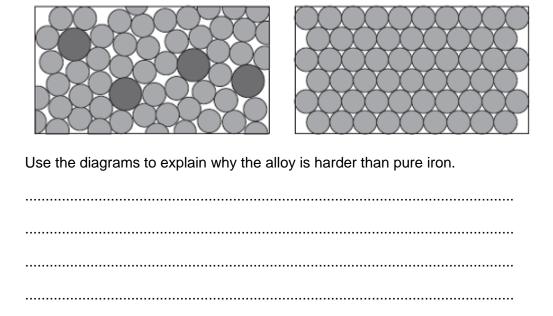
For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Pure iron is a soft, metallic <i>element</i> .	
(i) Why is iron described as an <i>element</i> ?	
	(1)
(ii) Pure iron would not be suitable for a replacement hip joint.	
Suggest why.	
	(1)
(iii) The three metals in stainless steel have different sized atoms. Stainless steel is harder than pure iron.	
Explain why.	
	••
	 (2)
	(Total 6 marks)

Q5.Oil rigs are used to drill for crude oil.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

© Digital Vision/Photodisc


Pure iron

(2)

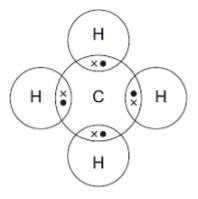
(a) Drills are made from an alloy of iron.

Alloy

The diagrams show the particles in the alloy and in pure iron.

(b) Drill heads contain diamonds.

Tick (✓) **two** reasons why diamonds are hard.


Reason	Tick (✓)
Diamonds have a giant covalent structure.	
Diamonds have high melting points.	
Diamonds are unreactive.	

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Diamonds have strong bonds between carbon atoms.

(2)

(c) Methane gas is often found where crude oil is found. The diagram shows how atoms bond in methane. Only the outer electrons are shown.

(i) Draw a ring around the correct answer to complete the sentence.

a compound.

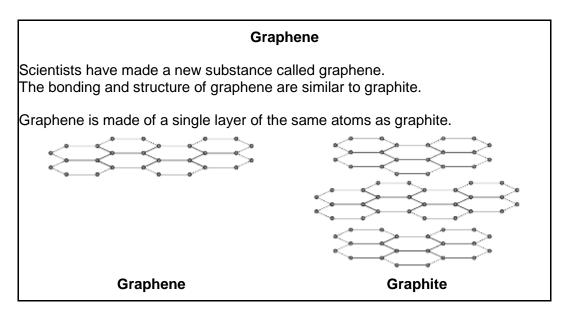
Methane is an element.

a mixture.

(1)

(ii) Draw a ring around the correct answer to complete each sentence.

The formula of methane is $\begin{array}{c} C_4 H \\ C_4 H \\ C_4 H \end{array}$


(1)

(iii) Name the type of bond between the carbon and hydrogen atoms in methane.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

		(1)
(d)	Explain why methane is a gas at 20°C.	
		(2) (Total 9 marks)

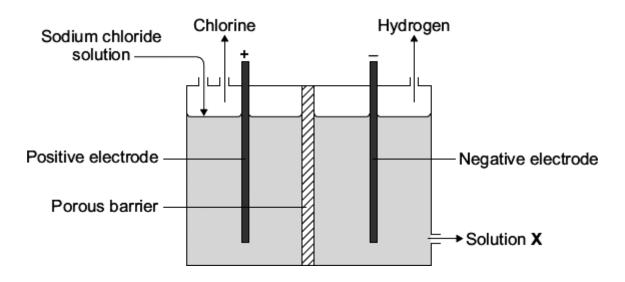
Q6. Read the information

Use the information above and your knowledge of graphite to answer the questions.

(a) This part of the question is about graphene.

Choose the correct answer to complete each sentence.

(i) ionic covalent metallic


The bonds between the atoms in graphene are

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(ii)		chromium carbon chlorine	
		Graphene is made of atoms.	(1)
(iii)		2 3 4 In graphene each atom bonds to other atoms.	(1)
	(b)	This part of the question is about graphite. Graphite is used in pencils.	
		Explain why. Use the diagrams to help you.	
			(2) (Total 5 marks)

Q7. The electrolysis of sodium chloride solution is an industrial process.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

(a) Why do chloride ions move to the positive electrode?	
	(1)

(b) Sodium chloride solution contains two types of positive ions, sodium ions (Na⁺) and hydrogen ions (H⁺).

Tick (\checkmark) the reason why hydrogen is produced at the negative electrode and **not** sodium.

Reason	Tick (√)
Hydrogen is a gas.	
Hydrogen is less reactive than sodium.	
Hydrogen is a non-metal.	
Hydrogen ions travel faster than sodium ions.	

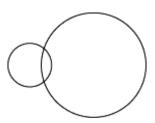
(1)
•		,

(c) Solution X is alkaline.

Which ion makes solution X alkaline?

.....

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk


- (d) Electrolysis of sodium chloride solution produces hydrogen and chlorine. The hydrogen and chlorine can be used to make hydrogen chloride.
 - (i) The diagrams show how the outer electrons are arranged in atoms of hydrogen and chlorine.

Hydrogen atom

Chlorine atom

Complete the diagram to show how the electrons are arranged in a molecule of hydrogen chloride (HCI).

(1)

- (ii) Name the type of bond between the hydrogen and the chlorine atoms in a molecule of hydrogen chloride.

 (1)
- (iii) Some hydrogen chloride was bubbled into water. This made a solution with a pH of 1.

Which ion gave the solution a pH of 1?

(1) (Total 6 marks)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Q8. Calamine lotion is used to treat itching. The main ingredients are two metal oxides.

(a) One of the metal oxides has a relative formula mass (M_1) of 81.

The formula of this metal oxide is MO. (M is **not** the correct symbol for the metal.)

The relative atomic mass (A_r) of oxygen is 16.

(i)	Calcul	ate the	relat	ive a	tomic	mass	(A_r)	of me	etal	M.

.....

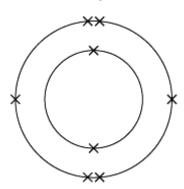
Relative atomic mass $(A_i) = \dots$

(2)

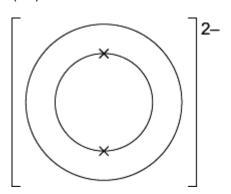
(1)

(ii) Use your answer to part (a)(i) and the periodic table on the Data Sheet to name metal M.

The name of metal M is


(b) The other metal oxide is iron(III) oxide.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>


This contains iron(III) ions (Fe³⁺) and oxide ions (O²⁻).

(i)	Explain in terms of electrons how an iron atom (Fe) can change into an iron(III) ion (Fe ³⁺).	
		(2)

(ii) The diagram below represents the electronic structure of an oxygen atom (O).


Complete the diagram below to show the electronic structure of an oxide ion (O^{2-}) .

(Total 6 marks)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Q9. (a) Magnesium metal is shaped to make magnesium ribbon.

	Explain why metals can be shaped.	
		(2)
(b)	Magnesium sulfate is a salt of magnesium.	
	It can be prepared by the reaction of magnesium metal with an acid. The eq for the reaction of magnesium with this acid is:	uation
Mg(s)	$+ \qquad H_2SO_4(aq) \qquad \rightarrow \qquad MgSO_4(aq) \qquad + \qquad H_2(g)$	
	(i) Name the acid used to make magnesium sulfate.	
	acid	(1)

(ii) Use the equation to help you to describe what you would **observe** when

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

	magnesium reacts with the acid.	
		(2)
(iii)	The magnesium sulfate is in solution.	
	How could you obtain solid magnesium sulfate from this solution?	
		(1)
	(Total 6 r	

Q10. Read the article and then answer the questions.

TOXIC SOCKS?

Silver nanoparticles are added to the fibres used to make some socks. Silver has the special property that it can kill bacteria. As a result there are no unpleasant smells when wearing these socks.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Some scientists are concerned about the use of silver nanoparticles in socks.

The silver can be released from the socks when they are washed. This silver may end up in rivers. Silver in rivers may kill fish.

Scientists found that some makes of socks release the silver more easily than others. Socks in which the silver nanoparticles are trapped in the fibres released very little silver when washed.

(a) Suggest why silver stops unpleasant smells when wearing the socks.

(1)

(b) How is the size of silver nanoparticles different from normal sized silver particles?

(1)

(c) The silver nanoparticles are more effective at preventing unpleasant smells than normal sized silver particles.

Suggest why.

By tfkrawksmysocks [CC BY-SA 2.0], via Flickr

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

(1)

		(2) (Total 5 marks)
		•
		•
	Ose the information in the article to explain why.	
	Use the information in the article to explain why.	
(d)	The silver nanoparticles should be trapped in the sock fibres.	

Q11. Read the information in the box.

Flash powder is used to produce special effects at pop concerts.

Flash powder contains aluminium. The powder burns with a bright white flame and gives out lots of heat and light. It also produces white smoke.

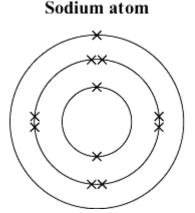
The flash powder is placed on stage in a special container. At the bottom of the container there is a thin piece of wire. When the flash is needed, electricity is passed through the wire. The wire gets hot and starts the aluminium

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

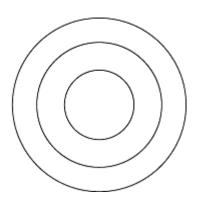
burning.		
	By russelljsmith [CC BY 2.0], via Flickr	
(a)	When aluminium burns the reaction is exothermic.	
	What is the meaning of exothermic?	
		(1)
(b)	The hot wire provides energy to start the aluminium burning.	
	What is the name given to the heat energy needed to start a chemical reaction?	
	energy	(1)
(c)	The white smoke produced is aluminium oxide.	
, ,	Aluminium oxide contains aluminium ions (Al3+) and oxide ions (O2-).	
	(i) Complete the diagram to show the electronic structure of an oxide ion.	
	The atomic number of oxygen = 8	
	Use crosses (x) to represent the electrons.	
	oxide ion	
	2-	(1)
		. ,

What causes the aluminium ions and oxide ions to be held together strongly?

The bonding in aluminium oxide is ionic.


(ii)

For more awesome GCSE and A level resources, visit ι	us at www.savemyexams.co.uk
--	-----------------------------

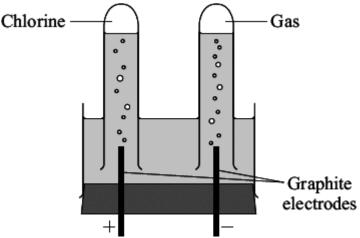

(4)
(1)
/T-1-1 4 \
(Total 4 marks)

- **Q12.** Sodium chloride is a raw material.
 - (a) The electronic structure of a sodium atom is shown below.

Complete the diagram for the electronic structure of a chlorine atom. A chlorine atom has 17 electrons.

(1)

(b) When sodium and chlorine react to form sodium chloride they form sodium ions (Na⁺) and chloride ions (Cl⁻).


How does a sodium atom change into a sodium ion?

.....

(2)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

(c) The diagram shows apparatus used in a school laboratory for the electrolysis of sodium chloride solution.

Th	e solution contains sodium ions (Na+), chloride ions (CI-), hydrogen ions (H+) and hydroxide ions (OH-).	
(i)	Why do chloride ions move to the positive electrode?	
		(1)
(ii)	Name the gas formed at the negative electrode.	
		(1)

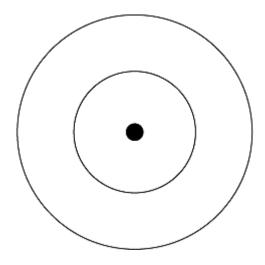
(d) Chlorine and chlorine compounds are used to bleach wood pulp that is used to make paper.

The article below is from a newspaper.

Local people have been protesting outside a paper factory. They say:

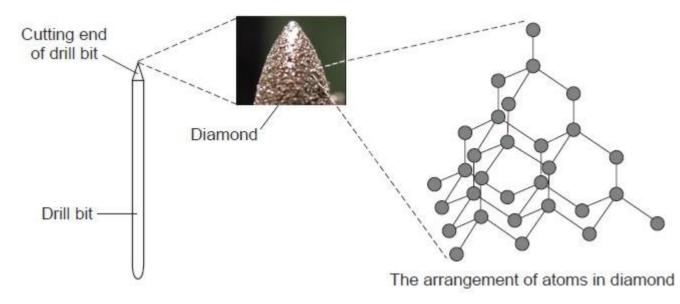
We want the company to stop using chlorine compounds. Chlorine compounds release poisons into the environment. The company should use safer compounds.'

The company replied:


'Chlorine has been used safely for many years to treat drinking water. Only tiny amounts of chlorine are released, which cause no harm. Using other compounds will be more expensive and may put us out of business.'

i)	Why are some local people worried about the use of chlorine compounds?

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>


			(1
	(ii)	Why might other local people want the company to continue to use chlorine compounds?	
			(1
	(iii)	It is decided to have an inquiry. Why should this be done by independent scientists?	
			(1 (Total 8 marks
Q13.	Pure carb	on can exist in two forms, diamond and graphite.	
	(a) Comp	elete the diagram to show the electronic structure of a carbon atom.	
		ow the electrons as crosses (x).	

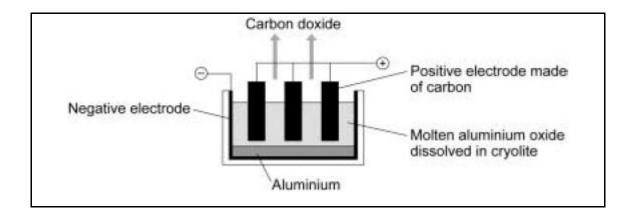
For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(1)

(b) A drill bit is used to cut holes through materials. The cutting end of this drill bit is covered with very small diamonds.

By Wanderlinse [CC By 2.0], via Flickr

i)	What property of diamond makes it suitable for use on the cutting end of a drill bit?	
		(1)


ii) Explain, as fully as you can, why diamond has this property. Use your knowledge of the structure and bonding of diamond and the information shown opposite to help you to answer this question.

.....

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

			r:
			(4
	(a) Evoloin wh	by graphite is a good conductor of electricity and why diamond does not conduct electricity	
	(c) Explain wh	by graphite is a good conductor of electricity and why diamond does not conduct electricity.	
			(3
			(Total 8 marks
Q14.	Read the infor	mation in the box and then answer the question.	
Δ1	uma la manda ()	. electrolygic of all mainings puids	
Alumini	um is made by the	e electrolysis of aluminium oxide.	
Alumini	ium oxide is an ion	ic compound containing aluminium ions (AI_{3+}) and oxide ions (O_{2-}).	
The dia	gram below show	s the apparatus used to electrolyse aluminium oxide.	

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

a)	In this question you will get marks on using good English, organising information clearly and using specialist terms correctly.
	Use information in the box and your knowledge and understanding of this process to answer this question.
	Explain, as fully as you can, how aluminium and carbon dioxide are formed in this process.

(b) Aluminium is a metal.

Explain why aluminium conducts electricity.

(6)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

 •	 	

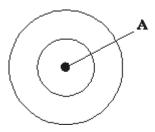
(2) (Total 8 marks)

Q15. Read the article and then answer the questions that follow.

Nanotennis!

Tennis balls contain air under pressure, which gives them their bounce. Normal tennis balls are changed at regular intervals during tennis matches because they slowly lose some of the air. This means that a large number of balls are needed for a tennis tournament, using up a lot of materials.

'Nanocoated' tennis balls have a 'nanosize' layer of butyl rubber. This layer slows down the escape of air so that the ball does not lose its pressure as quickly. The 'nanocoated' tennis balls last much longer and do not need to be replaced as often.

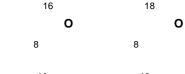

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(a) How does the 'nanosize' layer make the tennis balls la	ast longer?	
		(1)
(b) Put a tick (♥) next to the best description of a 'nanos	iize' layer.	
Description	(****)	
A layer one atom thick.		
A layer a few hundred atoms thick.		
A layer millions of atoms thick.		
		(1)
(c) Suggest why using 'nanocoated' tennis balls would be	good for the	environment.
		(2) (Total 4 marks)
Q16. This question is about oxygen atoms. The periodic table o	n the Data S	heet may help you to answer this question.
(a) (i) Oxygen atoms have 8 electrons.		

Complete the diagram to represent the arrangement of electrons in an oxygen atom.

Use crosses (\mathbf{x}) to represent the electrons.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk



(1)

(ii) Name the part of the oxygen atom that is labelled **A** on the diagram.

(1)

(b) Two isotopes of oxygen are oxygen-16 and oxygen-18.

oxygen-16 oxygen-18

Explain, in terms of particles, how the nucleus of an oxygen-18 atom is different from the nucleus of an oxygen-16 atom.

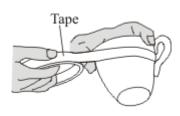
(2)

(Total 4 marks)

Q17. The following steps show how to use a type of glue.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Step 1 Measure out equal amounts of the liquids from tubes A and B.



Step 2 Mix the liquids to make the glue.

Put a thin layer of the glue onto each of the surfaces to be joined.

Step 3 Assemble the pieces to be joined and then hold them together with tape.

Step 4 Leave the glue to set.

- (a) When liquids **A** and **B** are mixed a chemical reaction takes place.
 - (i) This reaction is exothermic.

State how the temperature of the mixture will change as the glue is mixed.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

		(1)
(ii) When the glue sets it form	is a giant covalent structure.	
Explain why substances w	vith giant covalent structures have high melting points.	
		(2)
(b) The time taken for the glue to set a	t different temperatures is given in the table below.	
Temperature in °C	Time taken for the glue to set	
60	3 days 6 hours	
90	1 hour	
	increasing the temperature changes the rate of the reaction	which causes the glue to set.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Q18. Read the article and then answer the questions.

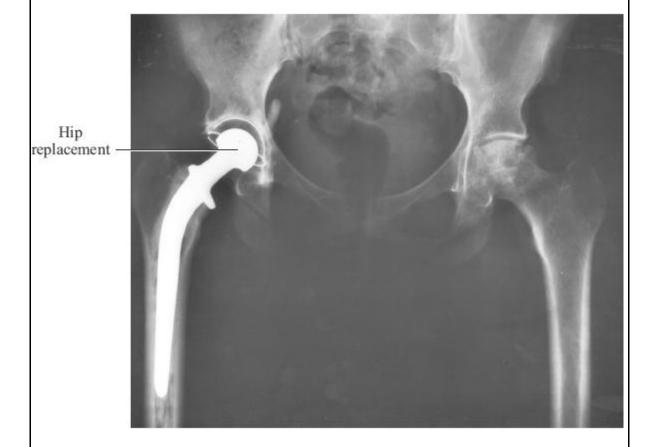
Nanotennis!

Tennis balls contain air under pressure, which gives them their bounce. Normal tennis balls are changed at regular intervals during tennis matches because they slowly lose some of the air.

'Nanocoated' tennis balls have a 'nanosize' layer of butyl rubber. This layer slows down the escape of air so that the ball does not lose its pressure as quickly.

(a)	What is the meaning of nanosize?	
		(1
(b)	Suggest why using 'nanocoated' tennis balls would be good for the environment.	

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>


(2) (Total 3 marks)

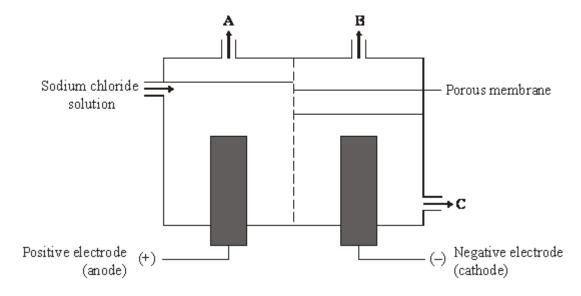
Q19. Read this passage about metals.

Metals are crystalline materials. The metal crystals are normally about 20 000 nm (nanometres) in diameter. The atoms inside these crystals are arranged in layers.

A new nanoscience process produces nanocrystalline metals. Nanocrystalline metals are stronger and harder than normal metals.

It is hoped that nanocrystalline metals can be used in hip replacements.

The use of nanocrystalline metals should give people better hip replacements which last longer.


Q20.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(a)	State why metals can be bent and hammered into different shapes.	
		(1)
(b)	How is the size of the crystals in nanocrystalline metals different from the size of the crystals in normal metals?	
		(1)
(c)	Hip joints are constantly moving when people walk.	
	Suggest and explain why the hip replacement made of nanocrystalline metal should last longer than one made of normal metals.	
		(2)
		(Total 4 marks)
т	he electrolysis of sodium chloride solution produces useful substances.	
(a)	Explain the meaning of <i>electrolysis</i> .	
		(2)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(b) The diagram shows an apparatus used for the electrolysis of sodium chloride solution.

 $Reproduced \textit{ with the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Ltd from PATRICK FULLICK et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the permission of Nelson Thornes Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the Patrick et al, ISBN 0-7487-9644-4. First published in 2006 and the 2006 and the$

The electrolysis produces two gases, chlorine and Gas A.
Name Gas A

(c)	The electrodes used in this process can be made of graphite. Explain why graphite conducts electricity.

(2) (Total 5 marks)

(1)

Q21. Toothpastes often contain fluoride ions to help protect teeth from attack by bacteria.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Sama	toothnastes	contain	tin(II)	fluorida

This compound has the formula SnF $_{\rm 2}$.

(a)	Calculate the relative formula mass (M _r) of SnF ₂ .	
	Relative atomic masses: F = 19; Sn = 119	
	Relative formula mass $(M_r) = \dots$	(2)
(b)	Calculate the percentage by mass of fluorine in SnF ₂ .	
	Percentage by mass of fluorine = %	(2)

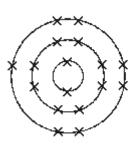
(c) A tube of toothpaste contains 1.2 g of SnF_2 .

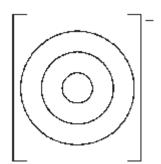
		Calculate the mass of fluorine in this tube of toothpaste.	
		Mass of fluorine = g	
			(1)
	(d)	The diagram represents the electron arrangement of a fluorine atom.	
		XX X X XX	
		Explain how a fluorine atom can change into a fluoride ion, F ₋ .	
		Explain new a nation dair change into a nation ton, i.	
		(Total 7 ma	(2) irks)
		(1001111110	
Q22.	(Cl ₂).	Hydrogen chloride (HCl) can be made by the reaction of hydrogen (H ₂) with chlorine	
	(a)	The diagrams represent molecules of hydrogen and chlorine.	
	H	H CI OCI	

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

	Draw a similar diagram to represent a molecule of hydrogen chloride (HCl). You need show only the outer energy level (shell) electrons.	
		(1)
		(')
(b)	The word equation for the reaction of hydrogen with chlorine is shown below.	
(=)	hydrogen + chlorine → hydrogen chloride	
	Write a balanced symbol equation for this reaction.	
	••••••	(2)
(c)	Hydrogen chloride gas reacts with magnesium to form the ionic compound called magnesium chloride. Use the table of ions on the Data Sheet to help you to write the formula of magnesium chloride.	
	·········	(1)
(d)	Why does magnesium chloride have a much higher melting point than hydrogen chloride?	

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk


		(2)
		(Total 6 marks)


Q23. (a) A tin of red kidney beans contains calcium chloride as a firming agent.

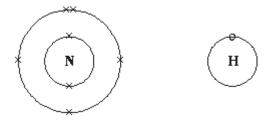
Calcium chloride is an ionic compound which contains calcium ions (Ca_{2+}) and chloride ions (Cl_{-}).

(i) The diagram on the left represents the electronic structure of a chlorine atom.Complete a similar diagram on the right to represent a chloride ion.

(2)

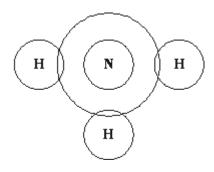
(ii) Explain how a calcium atom changes into a calcium ion which has a 2+ charge.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk


(2)

(b) Cola drinks contain phosphoric acid, H₃PO₄. The two equations show how phosphoric acid can be made from phosphorus.

Balance these two equations.


- (i) $P_4 + \dots O_2 \rightarrow P_4 O_{10}$ (1)
- (ii) P_4O_{10} + $H_2O \to 4H_3PO_4$ (1) (Total 6 marks)

- **Q24.** Ammonia (NH₃) is an important chemical which is used to make fertilisers. Ammonia is made from nitrogen and hydrogen,
 - (a) The diagrams represent the electron arrangements in atoms of nitrogen and hydrogen.

Complete the diagram showing the arrangement of electrons in a molecule of ammonia.

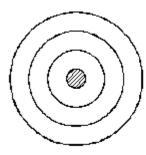
For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(1)

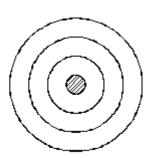
(b)	Name the type of bonding which holds the nitrogen and hydrogen atoms together in an ammonia molecule.	
		(1

(Total 2 marks)

- **Q25.** Many everyday substances can be classified as acids, bases or salts. For example, car batteries contain sulphuric acid, oven cleaners contain sodium hydroxide and table salt contains sodium chloride.
 - (a) A solution of each of these substances was tested with universal indicator.


Solution	Colour of universal indicator
Sulphuric acid (H₂SO₄)	red
Sodium hydroxide (NaOH)	purple
Sodium chloride (NaCl)	green

(i)	Explain how these universal indicator colours and the corresponding pH values could be used to identify each of these solutions.


For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

			(3)
			(3)
	(ii)	Name and give the formula of the ion which causes the solution to be acidic.	
		Name of ion	
		Formula of ion	(2)
			(2)
(b)		rum chloride can be made by reacting sodium hydroxide with hydrochloric acid be presence of an indicator.	
	(i)	What is the name of this type of reaction?	
			(4)
			(1)
	(ii)	Write a balanced chemical equation for this reaction.	
		(aq) +(aq) \rightarrow (l)	(2)
			(-)

(c) The atomic number for sodium is 11 and for chlorine is 17.

Sodium atom

Chlorine atom

(d)

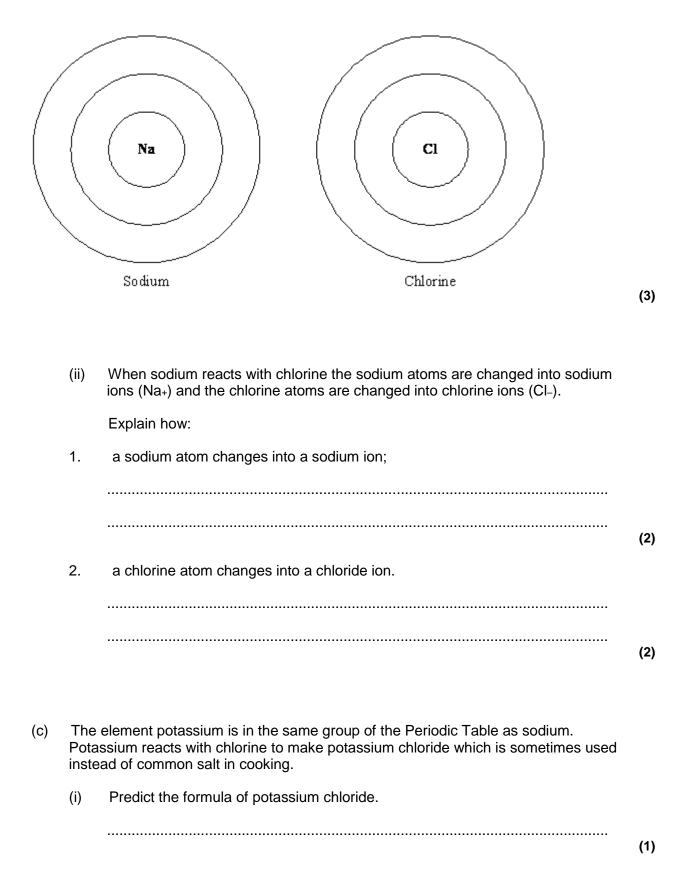
(i)	Complete the diagrams to show the electron arrangements for a sodium atom and a chlorine atom.
(ii)	These atoms form different particles by one electron transferring from the sodium atom to the chlorine atom. What is the name given to the particles formed?
(iii)	Why do these sodium and chloride particles bond?
d) Sod	ium chloride solution is electrolysed to form three products, hydrogen, chlorine
	sodium hydroxide. Chlorine Hydrogen
odium hloride — olution	
	H ⁺ OH ⁻ H ⁺ OH ⁻ Sodium Na ⁺ Cl ⁻ Na ⁺ hydroxide solution
	Na ⁺ Cl⁻ Na ⁺ Sodium hydroxide solution
Desc	Na ⁺ Cl⁻ Na ⁺ Sodium hydroxide solution
Desc	Na ⁺ Cl [−] Na ⁺ Hydroxide solution

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

(3)	
(0)	
(Total 15 marks)	

Q26. This question is about sodium chloride (common salt) which is an important chemical.

Sodium chloride can be made by burning sodium in chlorine gas.



(a) Balance the symbol equation for the reaction of sodium with chlorine.

$$Na(s)$$
 + $CI_2(g)$ \rightarrow $NaCI(s)$ (1)

(b) (i) Complete the diagrams below to show the electronic structures of a sodium and a chlorine atom. (Atomic number of sodium = 11 and chlorine = 17.)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

By reference to the electronic structures of potassium and sodium explain:

(d)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(1	ii)	Why the reaction of potassium with chlorine is similar to the reaction of sodium with chlorine.	
			(1)
C	liagra	electrolysis of sodium chloride solution is an important industrial process. The ams below show two experiments set up during an investigation of the olysis of sodium chloride.	
		sodium chloride solution	
solic chlo		dium + -	
		Experiment 1 Experiment 2	
(i)	What would be the reading on the ammeter in experiment 1?	
(ii)	Explain your answer.	
			(3)

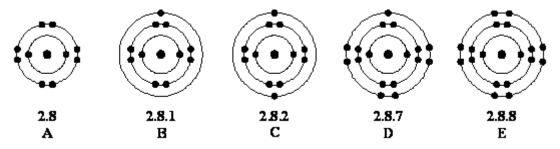
(e) The equations below show the reactions which take place in experiment 2.

Q27.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

				H ₂ O(1)	\rightarrow	H+(aq)	+	OH- (aq)	
				2H+(aq)	+	2e-	\rightarrow	$H_2(g)$	
				2CI-(aq)	-	2e_	\rightarrow	$Cl_2(g)$	
	(i)	Whi	ch sub	stance pro	ovides hy	drogen ions			(1
	(ii)	Nam	ne the	product for	med at:				
		(A)	the p	ositive ele	ctrode;				
		(B)	the I	negative el					
									(1) (Total 15 marks)
comp								d in the Earth's cr also found as its	
(a)				gnesium a up this is.	re in the	same Grou	up in the	Periodic Table.	
									(1)
(b)	Use	the D	ata Sh	neet to help	you to a	answer this	questio	n.	
	(i)	Writ	e the o	chemical fo	rmula of	magnesiur	n chlorid	de.	

(1)


For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

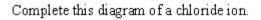
(ii)	Name the type of bonding in magnesium chloride.	
	(Total 3	(1) marks)

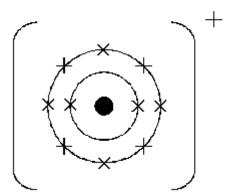
Q28. Use the Data Sheet to help you answer this question.

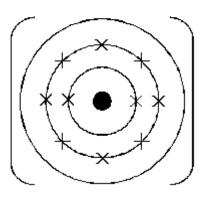
When sodium reacts with water it forms sodium ions.

The diagrams below represent the electron arrangements of some atoms and ions.

Which of the diagrams, ${\bf A}$ to ${\bf E}$, represents the electron arrangement of each of the following?


- (i) A sodium atom, Na
- (ii) A sodium ion, Na+


(Total 2 marks)


Q29. Sodium chloride is an ionic compound.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

This is a diagram of a sodium ion.

(Total 2 marks)

(2)

Q30. (a) A piece of lithium is placed on the surface of some water in a beaker. Hydrogen is given off.
Lithium hydroxide is also formed.

Write a word equation for this reaction.

.....

(b) The diagram shows the structure of a molecule of methane.

Write down everything that this diagram tells you about a methane molecule.

them into a sensible order and use the correct scientific words.

To gain full marks in this question you should write your ideas in good English. Put

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk
--

	•••••			(Total 6 marl
31.	Flec	etrone nautrone a	and protons are sub-atomic particle	ae
				5 5.
(a)	Co	mplete the six sp	paces in the following table.	
Name of	sub-	atomic particle	Relative mass	Relative charge
			1	
				0
			<u>1</u> 1840	
(b)		aluminium atom ł leus?	nas 13 electrons. How are these a	rranged in shells around the
(c)	Chr	omium atoms hav	ve 24 protons and 28 neutrons.	
	(i)	How many elec	ctrons does each neutral chromiur	n atom have?
	(ii)	What is the ma	ss number of chromium?	

(d)	What change occurs to an atom which undergoes the process of <i>reduction</i> in a chemical reaction?	(1)
(e)	The diagram shows part of the ionic lattice of a sodium chloride crystal.	
<u></u>	Explain why the ions in this lattice stay in place.	

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk

Q32. (a) Atoms are made of sub-atomic particles. Complete the **six** spaces in the table.

Name of sub-atomic particle	Relative mass	Relative charge
	<u>1</u> 1840	
Neutron		
	1	

(3)

- (b) Complete the spaces in the sentences.
 - (i) The atomic number of an atom is the number of in its nucleus and is equal to the number of if the atom is not charged.

(1)

(1)

(c) The table gives information about the atoms of three elements.

		Num	ber of electron	s in:
Name of element	Chemical symbol	1st shell	2nd shell	3rd shell
Fluorine	F	2	7	0
Neon	Ne	2	8	0
Sodium	Na	2	8	1

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

Two of these elements can react together to form a chemical compound.

(i)	What is the name and the formula of this compound?	
	Name Formula	(2)
(ii)	What type of bonding holds this compound together?	
		(1)
(iii)	Explain, in terms of electron transfer, how the bonding occurs in this compound.	
	(Total 10 m	(2) arks)

Q33. Ammonium nitrate and ammonium sulphate are used as fertilisers.

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(i)	Which acid reacts with ammonia to form ammonium nitrate?	
		(1)
(ii)	Which acid reacts with ammonia to form ammonium sulphate?	
		(1)
(iii)	The reactions in (i) and (ii) are both exothermic. How can you tell that a reaction is	
	exothermic?	
		(1)

(iv) The reactions in (i) and (ii) are both examples of acid + base reactions. What is the name of the chemical change which takes place in every acid + base reaction?

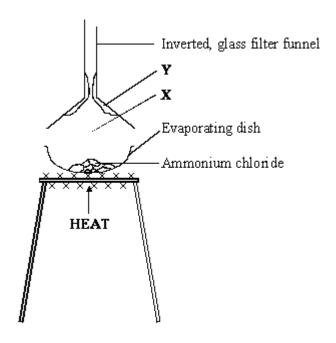
For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

(1)
(Total 4 marks)

Q34. Part of the Periodic Table showing the symbols for the first twenty elements is given below.

		Н						He
Li	Be		В	С	N	0	F	Ne
Na	Mg		Al	Si	P	S	Cl	Ar
к	Ca	Transition metals						

- (a) Draw diagrams showing the arrangement of electrons (electronic structures) in:
 - (i) an aluminium atom;


(ii) a chlorine atom.

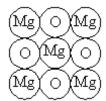
(2)

(b) (i) Use electronic structures to help you show why the formula of sodium oxide is

Q35.

	Na₂O.		
			(3)
(ii)	State why the formation of sodiur	n ions is classified	d as an oxidation.
			(1) (Total 6 marks)
(a) heat	The equation for the reaction tha ed is:	t takes place whe	n ammonium chloride is
	NH₄Cl(s) 	NH₃(g) + ammonia	HCl (g) hydrogen chloride
	e diagram shows how a teacher der carried out in a fume cupboard.	monstrated this re	eaction. The demonstration

(1)	at X ?	
	and	(1)
		(.,
(ii)	Name the white solid that has formed at Y.	
		(1)
(iii)	Why was the demonstration carried out in a fume cupboard?	
		(1)
(iv)	Complete the four spaces in the passage.	
	The chemical formula of ammonia is NH3. This shows that there is one atom of	
	and three atoms of in each	

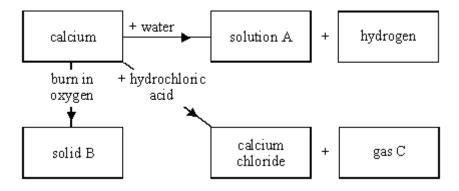

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

	of ammonia. T	hese atoms are joined l	by bonds that
are formed by shari	ng pairs of electrons.	This type of bond is cal	led
a	bond.		(4
			(3
(b) Electrons, neutrons and p	protons are sub-atomi	c particles.	
(i) Complete the three	spaces in the table.		
Name of automotomic months	Dalatha was	Baladian alianna	1
Name of sub-atomic particle	Relative mass	Relative charge	
	1	+1	
	1	0	
	1 1840	-1	
			1
			(2)
(ii) Which two sub-ator	mic narticles are in the	e nucleus of an atom?	
	and	l	(1) (Total 10 marks)

Q36. Part of a reactivity series is:

·	sodium calcium magnesium aluminium	
increasing reactivity	zinc iron hydrogen copper	
(a)	Carbon is used in blast furnaces to obtain iron and zinc from their oxides, but electrolysis has to be used to obtain aluminium from its oxide.	
	Draw an arrow on the reactivity series above to show where carbon fits into the series.	(1)
(b)	Predict the method of extraction used to obtain calcium from its ore and explain your answer.	
		(2)
(c)	The formula for zinc oxide is ZnO. Write a balanced equation for the extraction of zinc in the blast furnace.	
	(Total 5 ma	(2) arks)
007		
Q37.	Magnesium oxide is a compound, made up of magnesium ions and oxide ions.	

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk



(a) What is the charge on each magnesium ion?

(b) Explain how the magnesium ions get this charge.

(Total 3 marks)

Q38. (a) The chart shows the reactions of the metal calcium with water, oxygen and dilute hydrochloric acid.

Name (i) solution A

(ii) solid B

(iii)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

			(3)
(b)		diagrams below show the electronic structure of an atom of calcium and an of oxygen.	
	calciur	oxygen atom	
	Des	cribe fully what happens to its electrons when:	
	(i)	a calcium atom forms a calcium ion. State the charge on the calcium ion formed.	
			(3)
	(ii)	an oxygen atom forms an oxygen ion. State the charge on the oxygen ion formed.	
			(3)
(c)	Calc point	ium oxide is an ionic compound. Why do ionic compounds have high melting ss?	

gas C

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

				(Total 11 mai
##				
Atoms of calcium, phonumber and proton nu		e are represented b	elow, each with its	s mass
31 19 👞	mass numbers			
31 19 ← a P F 15 9 ←	mass numbers proton number	s		
a PF		s		
a PF		s		
a PF 15 9 ←				
a PF 15 9 ←	proton number		FLUORINE	
a PF 15 9 ←	tion to complete the	table.	FLUORINE 9	
a PF 15 9 ← (a) Use this informa	tion to complete the CALCIUM us 20	table.		

Calcium and fluorine atoms can combine to form the compound calcium fluoride, (b) CaF₂.

The fluoride ion is represented by F-.

i)	Explain how the fluorine atom forms a fluoride ion.

			(2)
	(ii)	How is the calcium ion represented?	
			(2)
(c)	Pho	sphorus and fluorine form a covalent compound, phosphorus trifluoride.	
	Com	plete the sentences below which are about this compound.	
	Pho	sphorus trifluoride is made up of phosphorus and fluorine	
	The	se are joined together by sharing pairs of to form	
	phos	sphorus trifluoride	(2)
			(3)
(d)	(i)	Sodium chloride, an ionic compound, has a high melting point whereas paraffin wax, a molecular compound, melts easily.	
		Explain why.	
			(2)
	(ii)	Molten ionic compounds conduct electricity but molecular compounds are non-conductors, even when liquid.	
		Explain why.	
			/- 1
		(Total 14 m	(2) arks)

Q40. The diagram shows one molecule of the compound ammonia.

Write down everything that the diagram tells you about each molecule of ammonia.						
	 (Total 4 marks)					

Q41. (a) The diagrams below show the electronic structure of a magnesium atom and a magnesium ion.

What is the charge on the magnesium ion?

			(2)
	(b)	Calcium bromide has the formula CaBr ₂ . What does this tell you about the ions in this compound?	
		(Total 4 mar	(2) rks)
Q42.		(a) Write down the symbols for	
		lithium	
		fluorine	(2)
	(b)	The electronic structure of a lithium atom can be shown like this:	
	2,1 d	where x is an electron.	
		In a similar way, complete this diagram to show the electronic structure of a fluorine atom.	
	2,7 (or (

(c)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk</u>

A fluorine atom can gain one electron to form a fluoride ion.

Choose	from the	list the co	rrect way t	o write the fluoride ion.	
(2,6)+	(2,7)+	(2,7)-	(2,8)+	(2,8)-	
			Ans	wer	
					(2 Total 5 marks)

A lithium atom can lose one electron to form a lithium ion which can be written (2)+