

Mark Scheme (Results)

November 2012

GCSE Chemistry 5CH2H/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG034057
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Chemistry 5CH2H/01 Mark Scheme – November 2012

Question	Answer	Acceptable answers	Mark
Number			
1(a)	C : copper sulfate and sodium		(1)
	chloride		

Question Number	Answer	Acceptable answers	Mark
1(b)	copper sulfate (1) blue-green (1)	allow blue or green or green-blue	(2)
	or		
	sodium chloride (1) yellow (1)	reject orange and yellow-orange	
	colour mark consequential on correct metal (compound)		

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	An explanation linking		(2)
	weak intermolecular forces /weak forces between molecules (1)	bonds / attractions in place of forces	
	little {heat / energy} needed to separate (molecules) (1)	intermolecular forces between {atoms / bonds} loses 1st marking point	
		any answer in terms of covalent or ionic bonding scores zero	

Question Number	Answer	Acceptable answers	Mark
1(c)(ii)	A description linking		(2)
	use separating funnel (1)	alternative description of separating funnel eg funnel with a tap at the bottom suitable labelled diagram burette	
	run off lower {layer / liquid} / OWTTE (1)	allow layers / liquids to separate ignore fractional distillation	

Question Number	Answer	Acceptable answers	Mark
1(d)	H O CI	Allow a diagram without labels for 2 marks	(2)
	shared pair in molecule (1) rest of molecule consequent on first mark (1)	any symbols shown must be correct for the 2 nd mark allow any combination of dots and crosses for electrons	
	·	correct for the 2 nd mark allow any combination of dots	

Question Number	Answer	Acceptable answers	Mark
2(a)(i)	soft / low melting point / low boiling point	easily cut with a knife = soft low density malleable solid at room temp.	(1)
		ignore float on water reject chemical properties	

Question Number	Answer	Acceptable answers	Mark
2(a)(ii)	An explanation linking		(2)
	(all have) one electron in outer shell (2)	one outer electron = 2 marks	
		group number shows number of electrons in outer shell = 2 marks	
		same number of electrons in outer shell = 1 mark	
		incorrect number of electrons in the outer shell = 1 mark	
		accept outer orbit / highest energy level in place of outer shell	

Question Number	Answer	Acceptable answers	Mark
2(b)(i)	A description including any two of		(2)
	effervescence / fizzing / bubbles (1) potassium floats (1) moves (on surface) (1) potassium forms ball / melts (1)		
	potassium decreases in size / disappears / dissolves (1)	ignore ignites	
	(lilac) flame / catches fire (1) spits / explodes / sparks (1)	ignore smoke	

Question	Answer	Acceptable answers	Mark
Number			
2(b)(ii)	D: $2K + 2H_2O \rightarrow 2KOH + H_2$		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)	An explanation linking any two of increasing {size /radius (of atom) / number of shells} (1) increased shielding (of outer electron) (1) less attraction for (outer) electron (1)	easier to remove (outer) electron	(2)

Question	Answer	Acceptable answers	Mark
Number			
3(a)(i)	A, B and C	Mg Ca Au (any order) magnesium calcium gold (any order)	(1)

Question Number	Answer	Acceptable answers	Mark
3(a)(ii)	A and B	Mg Ca (any order)	(1)
		magnesium calcium (any order)	

Question	Answer	Acceptable answers	Mark
Number			
3(b)	8 (protons)		(1)

Question	Answer	Acceptable answers	Mark
Number			
3(c)(i)	A: 10		(1)

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	(in 100 atoms) mass of mass number 20 atoms = 20 x 90 (1) mass of mass number 22 atoms = 22 x 10 (1) relative atomic mass = {(22 x 10) + (20 x 90)}/100 (=20.2) (1) OR 20 contributes = 90/100 x20(1) 22 contributes = 10/100 x22(1) relative atomic mass 90/100 x 20 + 10/100 x 22 (= 20.2) (1)	20.2 = 3 marks 21.8 = 2 marks (only 1 error made)	(3)

Question Number	Answer	Acceptable answers	Mark
3(d)	An explanation linking any two of		(2)
	(the element is) group 0 / noble gas /unreactive / inert / does not react (1)	ignore 'not very reactive'	
	{ (has) 8 electrons / full} outer shell (1) prevents filament from reacting (1)	does not {gain / lose / share} electrons	

Question Number	Answer	Acceptable answers	Mark
4(a)	to allow air/oxygen in	to ensure magnesium reacts/burns / combusts	(1)

Question	Answer	Acceptable answers	Mark
Number			
4(b)(i)	all points correctly plotted to half	Allow one mark for four or five	(3)
	a small square (2)	correctly plotted points	
	line of best fit (1)	ecf their points	

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	Any one from		(1)
	not all magnesium {burned / reacted} / some left / incomplete reaction not enough air/oxygen some magnesium oxide / smoke lost	lid not lifted / not enough times lid left off too long (so loses MgO)	

Question Number	Answer	Acceptable answers	Mark
4(c)	$2Mg + O_2 \rightarrow 2MgO$ left hand formulae (1) right hand formula (1) balancing correct formulae (1)	correct multiples	(3)

Question Number	Answer	Acceptable answers	Mark
4(d)	0.414 / 207 or 0.064 / 16 (1) 0.002 : 0.004 or 1 : 2 (1) empirical formula PbO ₂ (1)	if 207 / 0.414 and 16 / 0.064 ratio 500 : 250 or 2 : 1 (1) empirical formula Pb ₂ O (1)	(3)
		allow 3 marks for 0.414 / 207 or 0.064 / 32 ratio 1 : 1 empirical formula PbO ₂	
		allow 2 marks for if 0.414 / 207 and 0.064 / 32 ratio 1 : 1 empirical formula PbO	

Question Number	Answer	Acceptable answers	Mark
5(a)	An explanation linking two of the following temperature decreases (1) {heat / energy} taken in (1) (so process) endothermic (1)	ignore references to bond breaking / making heat given out / exothermic = 1 max.	(2)

Question Number	Answer	Acceptable answers	Mark
5(b)	Shown correctly on diagram: horizontal line to right of reactant (1) product line below reactant line (1)	ignore any connecting lines product label not needed	(2)

Question Number	Answer	Acceptable answers	Mark
5(c)	D : heat energy is required heat energy is released		(1)

Question Number		Indicative Content	Mark
QWC	*5(d)	An explanation including some of the following points	
		smaller pieces of solid of same mass larger surface area more frequent collisions higher rate of reaction	
		higher temperature particles move faster more frequent collisions particles have more energy more collisions have required energy to react / activation energy more collisions successful higher rate of reaction	(6)
		ORA	
Leve I	0	No rewardable content	
1	1 - 2	a limited explanation of one of factors e.g. at higher temperature higher rate e.g. when particles smaller size higher rate the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy	
2	3 - 4	a simple explanation e.g. at higher temperature particles move faster, more collisions so higher rate e.g. smaller sized particles (of same mass) have greater surface area so higher rate the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy	
3	5 - 6	a detailed explanation e.g. (when particles collide they) only react when they have sufficient energy/activation energy and at a higher temperature more of the particles have sufficient energy/activation energy so more collisions will be successful and when particles smaller size higher rate the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors	

Question Number	Answer	Acceptable answers	Mark
6(a)	D: Ca(NO ₃) ₂		(1)

Question	Answer	Acceptable answers	Mark
Number			
6(b)	C: 8		(1)

Question Number	Answer	Acceptable answers	Mark
Number 6(c)	Description including four of the following sodium - 2.8.1 / 1 electron in outer shell (1) sodium (atoms) lose electrons (1) one per atom (1) (forms) Na ⁺ (1) sulphur - 2.8.6 / 6 electrons in outer shell (1) sulfur (atoms) gain electrons (1)	Marks can be gained using diagrams mention of shared electrons / covalent bonding in words or diagram = max 2 marks	(4)
	two per atom (1) (forms) S^{2-} (1) two sodium atoms / ions combine with one sulfur atom / ion (1) formula is Na_2S (1)		

Question		Indicative Content	Mark
Number			
QWC	*6(d)	A description including some of the following points solid {regular arrangement/ lattice} (of ions) sodium/Na ⁺ ions chloride /Cl ⁻ ions (held together by) strong (ionic) bonds strong (electrostatic) forces of attraction between oppositely charged ions / positive and negatively charged ions closely packed together (when solid) does not conduct because ions cannot move molten heat energy {overcomes/breaks} (strong ionic) bonds strong (electrostatic) forces of attraction between oppositely charged ions / positive and negatively	
Leve	0	charged ions ions can move (therefore) conducts when molten No rewardable content	(6)
I		Two rewardable content	
1	1 - 2	a limited explanation e.g. does not conduct when solid e.g. does conduct when molten the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy	
2	3 - 4	a simple explanation e.g. does not conduct when solid, does conduct when molten because {ions / particles / atoms} can move the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy	
3	5 - 6	a detailed explanation e.g. solid has strong ionic bonds (between oppositely charged ions), does not conduct when solid because ions cannot move, does conduct when molten because ions can move the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UG034057 November 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

