Write your name here Surname Other names				
Surname	Other na	ames		
Edexcel GCSE	Centre Number	Candidate Number		
Chemistry Unit C3: Chemistry	in Action			
		Higher Tier		
Thursday 23 May 2013 – N Time: 1 hour	Morning	Higher Tier Paper Reference 5CH3H/01		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

PEARSON

The Periodic Table of the Elements

0 He 4 2 2	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
7	19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9	16 O oxygen 8	32 S sulfur 16	79 Se selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
ıc	14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 hav authenticated
4	12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb	Elements with atomic numbers 112-116 have been reported but not fully authenticated
က	11 boron 5	27 AI aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	ents with ato
'			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
			63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium 111
			59 N: nickel 28	106 Pd palladium 46	195 Pt platinum 78	[271] Ds darmstadtium 110
			59 Co cobalt 27	103 Rh rhodium 45	192 	[268] Mt meitnerium 109
T Thydrogen			56 iron 26	Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
			55 Mn manganese 25	Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
	nass ool umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
	relativ ato atomic		48 Ti titanium 22	91 Zr zirconium 40	178 Hf hafnium 72	[261] Rf rutherfordium 104
'			45 Sc scandium 21	89 × yttrium 39	139 La * lanthanum 57	[227] Ac* actinium 89
0	9 Be beryllium 4	24 Mg magnesium 12	40 Ca caldum 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
-	7 Li lithium 3	23 Na sodium 11	39 K potassium	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87
		ω	8	£	Ö	

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

Electrolysis

1 (a) The ions in sodium chloride solution are

sodium ions, Na⁺ chloride ions, Cl⁻ hydrogen ions, H⁺ hydroxide ions, OH⁻

Sodium chloride solution is electrolysed using a direct electric current.

(i) Which of these ions will be attracted to the cathode during the electrolysis of sodium chloride solution?

Put a cross (☒) in the box next to your answer.

(1)

- \square **A** H^+ ions only
- **B** H⁺ and Na⁺ ions
- C Cl⁻ions only
- ☑ D Cl and OH ions
- (ii) Chlorine is one of the products of the electrolysis.

The half-equation for the production of chlorine is

$$2CI^{-} \rightarrow CI_{2} + 2e$$

Explain how the half-equation shows that chloride ions are oxidised.

(2)

(iii) Suggest why the solution remaining at the end of the electrolysis is alkaline.

(1)

 (b) (i) When copper sulfate solution is electrolysed using inert electrodes, oxygen is formed at the positively charged anode. Explain how the oxygen is formed from ions in the solution. (ii) The other product is copper. 1.27 g of copper were produced in an experiment. Calculate the number of moles of copper, Cu, produced in this experiment.) (i) When copper sulfate solution is electrolysed using inert electrodes, oxygen is
(ii) The other product is copper. 1.27 g of copper were produced in an experiment.		
1.27 g of copper were produced in an experiment.	(2)	
1.27 g of copper were produced in an experiment.		
		(ii) The other product is copper.
Calculate the number of moles of copper, Cu, produced in this experiment.		
(Relative atomic mass: Cu = 63.5)	(1)	
amount of copper produced =		amount of copper produced =
(Total for Question 1 = 8 marks	rks)	(Total for Question 1 = 8 marks)

Organic chemistry

2 (a) (i) Which of the following is the formula for a molecule of butane?

Put a cross (⋈) in the box next to your answer.

(1)

- A C₃H₆
- B C₃H₂
- C C₄H₈
- \square **D** C_4H_{10}
- (ii) Draw the structure of a molecule of propene, showing all covalent bonds.

(2)

(b) Complete the sentence by putting a cross (☒) in the box next to your answer.

Ethanol, C₂H₅OH, can be converted into ethanoic acid, CH₃COOH.

In this reaction, ethanol is

(1)

- A dehydrated
- B neutralised
- C oxidised
- □ reduced

	(Total for Question 2 = 8 ma	rlcc)
CH ₃ COOH	$+ C_2H_5OH \rightarrow \dots + \dots + \dots$	
	complete the balancea equation for this reaction.	(2)
	Complete the balanced equation for this reaction.	
(ii)	When ethanoic acid reacts with ethanol, one of the products is the ester, ethyl ethanoate.	
	ethanoic acid.	(2)
(c) (i)	Describe what you would see when solid sodium carbonate is added to dilute ethanoic acid.	(-)

		Ethanol	
3	(a)	Ethanol can be produced by reacting ethene with steam.	
		Write the balanced equation for this reaction.	(2)
•••••	(b)	Ethanol can also be produced by fermentation.	
		Describe how ethanol can be produced from sugar by fermentation.	(2)
	(c)	A country has large amounts of available fertile land. It has no reserves of crude oil.	
		It is not a wealthy country.	
		Explain why this country produces the ethanol it needs by fermentation rather	
		than from ethene.	(3)

methanol	CH ₃ OH	
ethanol		
propanol		
Use the formula of the same hor	ae of these molecules to explain why these alcohols are members mologous series.	(2)
	(Total for Operation 2 – 0 mg	arks)
	(Total for Question 3 = 9 ma	ai K3,
	(Total for Question 3 = 9 ma	ai K3)
	(Total for Question 3 = 9 ma	<u>и кэ,</u>
	(Total for Question 3 = 9 ma	<u> </u>
	(Total for Question 3 = 9 ma	ui K3/
	(Total for Question 3 = 9 ma	<u> </u>
	(Total for Question 3 = 9 ma	ш к <i>3)</i>
	(Total for Question 3 = 9 ma	ar K3/
	(Total for Question 3 = 9 ma	
	(Total for Question 3 = 9 ma	ai K3)
	(Total for Question 3 = 9 ma	ai K3)
	(Total for Question 3 = 9 ma	ai K3/
	(Total for Question 3 = 9 ma	ai K3/
	(Total for Question 3 = 9 ma	ai K3/

Ammonia 4 When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ (a) Explain what is meant by a dynamic equilibrium. (2) (b) In industry, the reaction between nitrogen and hydrogen is affected by the conditions used. (i) The pressure used is 250 atmospheres. Explain how the use of a higher pressure would affect the equilibrium yield of ammonia. (2) (ii) The reaction between nitrogen and hydrogen to form ammonia is exothermic. The temperature used is 450 °C. Explain how the use of a lower temperature would affect the equilibrium yield of ammonia. (2)

(iii) Even at 450°C, the reaction is very slow. State what is used in industry to overcome this problem.	(1)	
(c) (i) Calculate the minimum volume of hydrogen required to completely convert 1000 dm³ of nitrogen into ammonia.		
volume of hydrogen =		dm³
(ii) Ammonia is reacted with excess nitric acid, HNO_3 , to make ammonium nitra NH_4NO_3 .	te,	
$NH_3 + HNO_3 \rightarrow NH_4NO_3$		
Calculate the mass of ammonium nitrate produced by the complete reactio of 34 g of ammonia.	n	
(Relative atomic masses $H = 1.0$, $N = 14$, $O = 16$)	(2)	
	(3)	
mass of ammonium nitrate produced =		g
(Total for Question 4 = 11 i	marks)	

Using titration

5 Titration can be used to determine the exact amount of hydrochloric acid that reacts with a given amount of sodium hydroxide solution.

 $HCI + NaOH \rightarrow NaCI + H_2O$

(a) What type of reaction takes place when hydrochloric acid reacts with sodium hydroxide solution?

(1)

Put a cross (⋈) in the box next to your answer.

- A neutralisation
- B oxidation
- □ C precipitation
- **D** reduction
- (b) Suggest why universal indicator must not be used in titration experiments.

(1)

*(c)	Sodium chloride solution can be made from dilute hydrochloric acid and sodium hydroxide solution.	
	Describe a titration experiment to find the exact volume of hydrochloric acid needed to neutralise 25.0 cm ³ of sodium hydroxide solution and how you would use this result to obtain pure dry crystals of sodium shloride.	
	use this result to obtain pure, dry crystals of sodium chloride.	(6)

So	dium hydroxide solution is titrated with dilute	hydrochloric acid.	
Th	e results of the experiment are		
vo	lume of sodium hydroxide solution =	= 25.0 cm ³	
vo	lume of 0.100 mol dm ⁻³ hydrochloric acid used	d	
	1 st titration =	= 22.6 cm ³	
(i)	State the volume of hydrochloric acid that me concentration of sodium hydroxide solution.	ust be used to calculate the	(1)
	volu	me of hydrochloric acid =	cm³
(ii)			
		ydroxide solution, NaOH, in	
		aCl + H.O	(3)
	concentration of sodium hydi	roxide solution =	mol dm ⁻³
		(Total for Question 5 = 12 ma	rks)
	Th vo vo	The results of the experiment are volume of sodium hydroxide solution volume of 0.100 mol dm ⁻³ hydrochloric acid used rough titration 1st titration 2nd titration (i) State the volume of hydrochloric acid that m concentration of sodium hydroxide solution. volu (ii) In a different experiment, 25.0 cm³ of sodium 23.2 cm³ of 0.100 mol dm⁻³ hydrochloric acid Calculate the concentration of this sodium hymol dm⁻³. NaOH + HCl → Na NaOH + HCl → Na	volume of sodium hydroxide solution = 25.0 cm³ volume of 0.100 mol dm⁻³ hydrochloric acid used rough titration = 23.1 cm³ 1st titration = 22.6 cm³ 2nd titration = 22.8 cm³ (i) State the volume of hydrochloric acid that must be used to calculate the concentration of sodium hydroxide solution. volume of hydrochloric acid =

	Identifying salts	
6	(a) Substance X is an ammonium salt.	
	(i) Complete the sentence by putting a cross (⋈) in the box next to your answer.	
	A test was carried out to find which anion is present in substance \mathbf{X} . Dilute hydrochloric acid was added to a sample of substance \mathbf{X} . There was effervescence and the gas given off turned limewater milky.	
	The anion present in substance X is	(4)
	■ A carbonate ion, CO ₃ ²⁻	(1)
	■ B chloride ion, Cl ⁻	
	☑ C nitrate ion, NO ₃	
	Sulfate ion, SO ₄ ²⁻	
	(ii) Describe how sodium hydroxide solution can be used to show that ammonium ions are present in substance X .	(2)
	(b) Aluminium ions, Al ³⁺ , react with hydroxide ions in solution to give a white	
	precipitate of aluminium hydroxide.	
	Write the ionic equation for this reaction.	(3)

*(c)	A technician found some colourless crystals of a substance left, unlabelled, in a beaker in a laboratory.	
	She knew the substance was one of potassium sulfate, potassium iodide, sodium sulfate or sodium iodide.	
	Explain how, using chemical tests, the technician could find out if the substance left in the beaker was potassium sulfate, potassium iodide, sodium sulfate or sodium iodide.	
	You may include equations in your answer.	(6)
	(Total for Question 6 = 12 m	arks)
_	TOTAL FOR PAPER = 60 MA	ARKS

