| Write your name here Surname Other names | | | | | |---|---------------|--------------------------------------|--|--| | Surname | Other na | ames | | | | Edexcel GCSE | Centre Number | Candidate Number | | | | Chemistry Unit C3: Chemistry | in Action | | | | | | | | | | | | | Higher Tier | | | | Thursday 23 May 2013 – N
Time: 1 hour | Morning | Higher Tier Paper Reference 5CH3H/01 | | | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ### **Information** - The total mark for this paper is 60. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. ### **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ PEARSON # The Periodic Table of the Elements | 0 He 4 2 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |-------------------|---|-------------------------------------|------------------------------------|-------------------------------------|--|---| | 7 | 19
F
fluorine
9 | 35.5
CI
chlorine
17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | orted but not | | 9 | 16
O
oxygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ve been repo | | ıc | 14 N nitrogen 7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112-116 hav
authenticated | | 4 | 12
C carbon
6 | 28
Si
silicon
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207 Pb | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | က | 11
boron
5 | 27
AI
aluminium
13 | 70 Ga gallium 31 | 115
In
indium
49 | 204
T
thallium
81 | ents with ato | | ' | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elem | | | | | 63.5
Cu copper 29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | | | | 59 N: nickel 28 | 106 Pd palladium 46 | 195
Pt
platinum
78 | [271] Ds darmstadtium 110 | | | | | 59
Co cobalt 27 | 103 Rh rhodium 45 | 192 | [268] Mt meitnerium 109 | | T Thydrogen | | | 56
iron
26 | Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | 55
Mn
manganese
25 | Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | nass
ool
umber | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | [266] Sg seaborgium 106 | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | relativ
ato
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261]
Rf
rutherfordium
104 | | ' | | | 45
Sc
scandium
21 | 89 × yttrium 39 | 139
La *
lanthanum
57 | [227]
Ac*
actinium
89 | | 0 | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
caldum
20 | Sr
strontium
38 | 137
Ba
barium
56 | [226] Ra radium 88 | | - | 7
Li
lithium
3 | 23
Na
sodium
11 | 39 K potassium | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223] Fr francium 87 | | | | ω | 8 | £ | Ö | | ^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. ## **Answer ALL questions** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . ### **Electrolysis** 1 (a) The ions in sodium chloride solution are sodium ions, Na⁺ chloride ions, Cl⁻ hydrogen ions, H⁺ hydroxide ions, OH⁻ Sodium chloride solution is electrolysed using a direct electric current. (i) Which of these ions will be attracted to the cathode during the electrolysis of sodium chloride solution? Put a cross (☒) in the box next to your answer. (1) - \square **A** H^+ ions only - **B** H⁺ and Na⁺ ions - C Cl⁻ions only - ☑ D Cl and OH ions - (ii) Chlorine is one of the products of the electrolysis. The half-equation for the production of chlorine is $$2CI^{-} \rightarrow CI_{2} + 2e$$ Explain how the half-equation shows that chloride ions are oxidised. (2) (iii) Suggest why the solution remaining at the end of the electrolysis is alkaline. (1) | (b) (i) When copper sulfate solution is electrolysed using inert electrodes, oxygen is formed at the positively charged anode. Explain how the oxygen is formed from ions in the solution. (ii) The other product is copper. 1.27 g of copper were produced in an experiment. Calculate the number of moles of copper, Cu, produced in this experiment. | |) (i) When copper sulfate solution is electrolysed using inert electrodes, oxygen is | |---|------|--| | (ii) The other product is copper. 1.27 g of copper were produced in an experiment. | | | | 1.27 g of copper were produced in an experiment. | (2) | | | 1.27 g of copper were produced in an experiment. | | | | | | (ii) The other product is copper. | | Calculate the number of moles of copper, Cu, produced in this experiment. | | | | | | | | (Relative atomic mass: Cu = 63.5) | (1) | | | amount of copper produced = | | amount of copper produced = | | (Total for Question 1 = 8 marks | rks) | (Total for Question 1 = 8 marks) | # **Organic chemistry** **2** (a) (i) Which of the following is the formula for a molecule of butane? Put a cross (⋈) in the box next to your answer. (1) - A C₃H₆ - B C₃H₂ - C C₄H₈ - \square **D** C_4H_{10} - (ii) Draw the structure of a molecule of propene, showing all covalent bonds. (2) (b) Complete the sentence by putting a cross (☒) in the box next to your answer. Ethanol, C₂H₅OH, can be converted into ethanoic acid, CH₃COOH. In this reaction, ethanol is (1) - A dehydrated - B neutralised - C oxidised - □ reduced | | (Total for Question 2 = 8 ma | rlcc) | |----------------------|--|-------| | CH ₃ COOH | $+ C_2H_5OH \rightarrow \dots + \dots + \dots$ | | | | complete the balancea equation for this reaction. | (2) | | | Complete the balanced equation for this reaction. | | | (ii) | When ethanoic acid reacts with ethanol, one of the products is the ester, ethyl ethanoate. | ethanoic acid. | (2) | | (c) (i) | Describe what you would see when solid sodium carbonate is added to dilute ethanoic acid. | (-) | | | | Ethanol | | |-------|-----|---|-----| | 3 | (a) | Ethanol can be produced by reacting ethene with steam. | | | | | Write the balanced equation for this reaction. | (2) | | ••••• | (b) | Ethanol can also be produced by fermentation. | | | | | Describe how ethanol can be produced from sugar by fermentation. | (2) | | | | | | | | (c) | A country has large amounts of available fertile land. It has no reserves of crude oil. | | | | | It is not a wealthy country. | | | | | Explain why this country produces the ethanol it needs by fermentation rather | | | | | than from ethene. | (3) | methanol | CH ₃ OH | | |------------------------------------|--|---------------| | ethanol | | | | propanol | | | | Use the formula
of the same hor | ae of these molecules to explain why these alcohols are members mologous series. | (2) | | | | | | | | | | | | | | | (Total for Operation 2 – 0 mg | arks) | | | (Total for Question 3 = 9 ma | ai K3, | | | (Total for Question 3 = 9 ma | ai K3) | | | (Total for Question 3 = 9 ma | <u>и кэ,</u> | | | (Total for Question 3 = 9 ma | <u> </u> | | | (Total for Question 3 = 9 ma | ui K3/ | | | (Total for Question 3 = 9 ma | <u> </u> | | | (Total for Question 3 = 9 ma | ш к <i>3)</i> | | | (Total for Question 3 = 9 ma | ar K3/ | | | (Total for Question 3 = 9 ma | | | | (Total for Question 3 = 9 ma | ai K3) | | | (Total for Question 3 = 9 ma | ai K3) | | | (Total for Question 3 = 9 ma | ai K3/ | | | (Total for Question 3 = 9 ma | ai K3/ | | | (Total for Question 3 = 9 ma | ai K3/ | # **Ammonia** 4 When nitrogen and hydrogen react to form ammonia, the reaction can reach a dynamic equilibrium. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ (a) Explain what is meant by a dynamic equilibrium. (2) (b) In industry, the reaction between nitrogen and hydrogen is affected by the conditions used. (i) The pressure used is 250 atmospheres. Explain how the use of a higher pressure would affect the equilibrium yield of ammonia. (2) (ii) The reaction between nitrogen and hydrogen to form ammonia is exothermic. The temperature used is 450 °C. Explain how the use of a lower temperature would affect the equilibrium yield of ammonia. (2) | (iii) Even at 450°C, the reaction is very slow. State what is used in industry to overcome this problem. | (1) | | |---|--------|-----| | (c) (i) Calculate the minimum volume of hydrogen required to completely convert
1000 dm³ of nitrogen into ammonia. | | | | volume of hydrogen = | | dm³ | | (ii) Ammonia is reacted with excess nitric acid, HNO_3 , to make ammonium nitra NH_4NO_3 . | te, | | | $NH_3 + HNO_3 \rightarrow NH_4NO_3$ | | | | Calculate the mass of ammonium nitrate produced by the complete reactio of 34 g of ammonia. | n | | | (Relative atomic masses $H = 1.0$, $N = 14$, $O = 16$) | (2) | | | | (3) | mass of ammonium nitrate produced = | | g | | (Total for Question 4 = 11 i | marks) | | | | | | | | | | | | | | | | | | # **Using titration** **5** Titration can be used to determine the exact amount of hydrochloric acid that reacts with a given amount of sodium hydroxide solution. $HCI + NaOH \rightarrow NaCI + H_2O$ (a) What type of reaction takes place when hydrochloric acid reacts with sodium hydroxide solution? (1) Put a cross (⋈) in the box next to your answer. - A neutralisation - B oxidation - □ C precipitation - **D** reduction - (b) Suggest why universal indicator must not be used in titration experiments. (1) | *(c) | Sodium chloride solution can be made from dilute hydrochloric acid and sodium hydroxide solution. | | |------|--|-----| | | Describe a titration experiment to find the exact volume of hydrochloric acid needed to neutralise 25.0 cm ³ of sodium hydroxide solution and how you would use this result to obtain pure dry crystals of sodium shloride. | | | | use this result to obtain pure, dry crystals of sodium chloride. | (6) | So | dium hydroxide solution is titrated with dilute | hydrochloric acid. | | |------|---|--|--| | Th | e results of the experiment are | | | | vo | lume of sodium hydroxide solution = | = 25.0 cm ³ | | | vo | lume of 0.100 mol dm ⁻³ hydrochloric acid used | d | | | | 1 st titration = | = 22.6 cm ³ | | | (i) | State the volume of hydrochloric acid that me concentration of sodium hydroxide solution. | ust be used to calculate the | (1) | | | volu | me of hydrochloric acid = | cm³ | | (ii) | | | | | | | ydroxide solution, NaOH, in | | | | | aCl + H.O | (3) | concentration of sodium hydi | roxide solution = | mol dm ⁻³ | | | | (Total for Question 5 = 12 ma | rks) | Th vo vo | The results of the experiment are volume of sodium hydroxide solution volume of 0.100 mol dm ⁻³ hydrochloric acid used rough titration 1st titration 2nd titration (i) State the volume of hydrochloric acid that m concentration of sodium hydroxide solution. volu (ii) In a different experiment, 25.0 cm³ of sodium 23.2 cm³ of 0.100 mol dm⁻³ hydrochloric acid Calculate the concentration of this sodium hymol dm⁻³. NaOH + HCl → Na NaOH + HCl → Na | volume of sodium hydroxide solution = 25.0 cm³ volume of 0.100 mol dm⁻³ hydrochloric acid used rough titration = 23.1 cm³ 1st titration = 22.6 cm³ 2nd titration = 22.8 cm³ (i) State the volume of hydrochloric acid that must be used to calculate the concentration of sodium hydroxide solution. volume of hydrochloric acid = | | | Identifying salts | | |---|--|-----| | 6 | (a) Substance X is an ammonium salt. | | | | (i) Complete the sentence by putting a cross (⋈) in the box next to your answer. | | | | A test was carried out to find which anion is present in substance \mathbf{X} . Dilute hydrochloric acid was added to a sample of substance \mathbf{X} . There was effervescence and the gas given off turned limewater milky. | | | | The anion present in substance X is | (4) | | | ■ A carbonate ion, CO ₃ ²⁻ | (1) | | | ■ B chloride ion, Cl ⁻ | | | | ☑ C nitrate ion, NO ₃ | | | | Sulfate ion, SO ₄ ²⁻ | | | | (ii) Describe how sodium hydroxide solution can be used to show that ammonium ions are present in substance X . | (2) | | | (b) Aluminium ions, Al ³⁺ , react with hydroxide ions in solution to give a white | | | | precipitate of aluminium hydroxide. | | | | Write the ionic equation for this reaction. | (3) | | | | | | *(c) | A technician found some colourless crystals of a substance left, unlabelled, in a beaker in a laboratory. | | |------|--|-------| | | She knew the substance was one of potassium sulfate, potassium iodide, sodium sulfate or sodium iodide. | | | | Explain how, using chemical tests, the technician could find out if the substance left in the beaker was potassium sulfate, potassium iodide, sodium sulfate or sodium iodide. | | | | You may include equations in your answer. | (6) | (Total for Question 6 = 12 m | arks) | | _ | TOTAL FOR PAPER = 60 MA | ARKS | | | | |